簡易檢索 / 詳目顯示

研究生: 鄭伯韋
Po-Wei Cheng
論文名稱: 閘極絕緣層處理提升有機薄膜電晶體之研究
Performance Improvement by Gate insulator Treatment Investigation of Organic Thin-Film Transistors
指導教授: 范慶麟
Ching-Lin Fan 
口試委員: 范慶麟
Ching-Lin Fan 
李志堅
Chih-Chien Lee
徐世祥
Shih-Hsiang Hsu
顏文正
Wen-Zheng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 107
中文關鍵詞: 五苯環聚乙烯吡咯烷酮聚乙烯醇四氟化碳微波
外文關鍵詞: pentacene, pvp, pva, CF4, microwave
相關次數: 點閱:188下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將以Pentacene為主動層的材料,並且分為兩種閘極絕緣層處理的方法,第一種方法是在PVA上用CF4電漿處理,並且再旋轉徒步PVP,以獲得較佳的電特性,先利用SEM量測到PVA厚度的改變,再進行電容的量測,由FTIR以及Contact Angle佐證,電容的不規律提升,是因為C-F鍵的導入取代掉原有的O-H鍵,由極性較大的C-F鍵去提升整體K值,並取再進行AFM量測,得知電漿處理後對薄膜表面的影響,不足以影響電特性,以消出一般對電漿處理後,薄膜粗糙度劣化的疑慮。
    首先PVA將不使用有毒性的交聯劑,而是與DI.Water混和,使用實驗室已知的比例PVA: DI.Water = 1:8,隨後配合旋轉塗佈初轉速500 rpm,時間20秒,末轉速3500 rpm,持續時間為40秒,然後放進烤箱,以110°C烘烤90分鐘去除多餘水分得到較佳成膜品質,接著使用不同瓦數CF4電漿在PVA上使用處理,在旋轉塗PVP。接這PVP部分,配製溶液的比例濃度、旋轉塗佈轉速以及加熱交聯溫度,來取得最佳值,比例濃度為PGMEA:PVP:PMCF = 100:10:5.0 (wt%),旋轉塗佈初轉速500 rpm,時間20秒,末轉速5500 rpm,持續時間為40秒,放入烤箱以180。C加熱交聯90分鐘。透過最大瓦數處理後,可以明顯看到電特性改善較佳的有機薄膜電晶體。
    第二種閘極絕緣層處理的方式,則是在SiO2上做表面處理,首先將由熱濕氧過的N-type 矽基板所成長的SiO2至入微波腔體,並且通入氧氣,施予65W的功率,藉此消除表面不利於pentacene成長的O-H鍵,以得到較大的晶格尺寸,以利載子傳輸,此點將由FTIR以及Contact Angle證明O-H鍵結的減少,以及AFM證明五苯環晶格大小的成長,最後再由Stres以及磁滯數據,加以說明表面改善不僅提升特性,同時增加穩電晶體的穩定度。


    The emerge of organic thin-film transistors (OTFTs) have provided a path to achieve low cost and less complexity of device fabrication. Among all organic materials, pentacene based OTFT is considered to be the most potential candidate for practical application including flexible displays, large-area chemical sensors for artificial skin applications, and radio-frequency power transmission devices. Additionally, due to the possibility of low cost mass production, it might be able to speed up the elevation of internet of things (IoT).
    Generally, the combination of PVP and pentacene is utilized to formed the main structure of OTFTs. However, power consumption of device fabricated with low dielectric constant material has always been our great concern. Basically, two paths are provided to solve this difficulty. one is thickness reduction of dielectric, the other is adoption of high k dielectric. Nevertheless, several issues will be encountered when we proceed these two solutions. For thickness reduction of dielectric, due to the fabrication method of organic thin film (spin coating), density of grain boundaries, defects, and pinholes will increase dramatically and lead to degradation of the device. As for adoption of high k dielectric, the quality of pentacene thin film is strongly affected by the surface states on which pentancene is deposited. This means that specific curing process or surface engineering should be conducted before we deposit pentacene on hydrophilicity material such as PVA. In this study, we selected PVA, an organic high k material, as our gate dielectric since its compatibility of flexible device fabrication. Additionally, we tried to reduce the thickness of PVA without creating defects by CF4 dry etching. In order to eliminate roughness effect produced by plasma damage and the hydrophilicity nature of PVA, another PVP layer was deposited on PVA layer. By doing so, a significant improvement on all electrical properties can be achieved, especially for threshold voltage (-7.4 V), an indicator of power consumption.

    The second type of gate insulating layer which is improving SiO2 surface . First, the SiO2 is put into the microwave cavity with Oxygen atmosphere, and 65 W is applied. Power, in order to decrease the surface of the OH bond that is not conducive to the growth of pentacene, so that we can obtain a larger grain size for carrier transport, which will prove the reduction of OH bond by FTIR and contact angle.AFM measurement proves larger grain size,so that we can explain Stres and hysteresis data, shows the surface improvement not only enhances the characteristics, but also increases the stability of the device.

    目錄 論文摘要 I ABSTRACT III 致謝 V 目錄 VI 圖目錄 X 表目錄 XV 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 有機薄膜電晶體介紹 4 2.1 有機半導體介紹 4 2.1.1有機半導體材料介紹 5 2.1.2有機半導體Pentacene之特性介紹 8 2.2 有機半導體之傳輸機制 9 2.2.1載子跳躍模型機制(Hopping Model)[46-48] 11 2.2.2陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 12 2.2.3偏極子模型機制 (The Polaron Model) [51] 13 2.3 有機絕緣層介紹 14 2.3.1閘及絕緣層材料 14 2.3.2高介電常數的介紹……………………………………………………….15 2.4 有機薄膜電晶體結構 16 2.5 有機薄膜電晶體之操作模式 18 2.6 電性參數萃取方式 21 2.6.1載子移動率(Mobility, μ) 21 2.7 臨界電壓(Threshold Voltage, Vth) 23 2.8 次臨界斜率(Subthreshold Swing, S.S.) 24 2.9 開關電流比(On/Off Current Ratio, Ion/Ioff) 25 第三章 CF4處理雙閘極絕緣層有機薄膜電晶體製作方法與流程 26 3.1 基板(Substrate)&閘極(Gate) 26 3.2 使用CF4 Plasma 對雙閘極絕緣層之元件處理流程以及調配方法 27 3.3 主動層 32 3.4 源極/汲極 36 3.5 製程機台及分析設備介紹 37 3.5.1製程機台 37 3.5.2半導體參數分析儀(Semiconductor Parameter Analyze) 40 3.5.3原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 41 3.5.4接觸角量測儀(CONTACT ANGLE) 42 3.5.5傅立葉轉換紅外線光譜儀傅立葉轉換紅外線光譜儀(FOURIER TRANSFORM INFRARED SPECTROMETER,FTIR) 43 3.5.6掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 44 3.5.7電感電容阻抗量測儀(LCR METER) 45 第四章 有機閘極絕緣層參數決定與實驗結果 46 4.1 使用PVA當閘極絕緣層實驗結果 46 4.2 對PVA做CF4電漿處理改善親水性 48 4.2.1對PVA做CF4電漿處理結果與分析 48 4.3 PVA+PVP雙閘極絕緣層結構實驗結果與分析 51 4.3.1挑選PVP塗佈在PVA上最佳參數值 51 4.3.2將PVP塗佈在CF4處理過的PVA上 53 4.3.3 CF4處理過後雙閘極電晶體電容量測分析……………………………...56 4.3.4 CF4電漿處理過後雙閘極電晶體表面分析 61 4.4 結論 62 第五章 微波通氧處理閘極絕緣層表面之有機薄膜電晶體製作流程 63 5.1 基板(Substrate)&閘極(Gate) 63 5.2 閘極絕緣層( Gate insulator layer) 64 5.3 主動層 67 5.4 源極/汲極 67 第六章 微波通氧原理討論與實驗結果 68 6.1 微波金屬加熱原理 68 6.2 實驗動機 74 6.3 實驗參數與結果 75 6.3.1微波通氧元件電特性結果 75 6.3.2微波通氧元件親疏水性分析 79 6.3.3微波通氧元件可靠度結果分析 80 6.4 結論 84 第七章 未來展望 86 7.1 CF4電漿處理有機薄膜雙閘極電晶體 86 7.2 微波通氧處理有機薄膜電晶體 86 參考文獻 87 圖目錄 圖2-1 RFID[13] 5 圖2-2有機半導體材料(高分子) 6 圖2- 3有機半導體材料(小分子,thiophene) 7 圖2-4有機半導體材料(金屬錯合物) 7 圖2-5 N型有機半導體遷移率[44] 8 圖2-6金屬、半導體、絕緣體之能帶關係 10 圖2-7 Hopping model 示意圖 12 圖2-8偏極子和雙偏極子之能帶間隙 14 圖2-9上接觸式OTFT以及下上接觸式OTFT示意圖 17 圖2-10無外加偏壓下 VG = VD = VS = 0 20 圖2-11累積模式VG < 0, VS = VD = 0 20 圖2-12夾止區 VD < VG < 0, VS = 0 20 圖2-13空乏模式 VG > 0, VS = VD = 0 21 圖2-14 IDS-VGS曲線之斜率 23 圖2-15外插法求臨界電壓 24 圖3- 1以耐熱膠帶定義出下針之區域 27 圖3-2 PVA、DI water 30 圖3-3配製PVA時專用之燒杯與攪拌磁石 30 圖3-4配製PVA時所用之針筒與濾嘴 31 圖3-5 PGMEA、PVP、PMCF 31 圖3-6配製PVP時專用之燒杯與攪拌磁石 31 圖3-7配置PVP時所用之針筒與濾嘴 32 圖3-8自行組裝的Thermal evaporator系統 34 圖3-9以金屬遮罩定義出主動層區域 34 圖3-10利用金屬遮罩製作主動層圖案化 35 圖3-11金屬蒸鍍系統 37 圖3-12 DI. Water製造機 37 圖3-13超音波洗淨機 38 圖3-14 Hot plate 38 圖3-15真空烤箱 38 圖3-16旋轉塗佈機 39 圖3-17 RIE離子蝕刻機 39 圖3-18有機薄膜蒸鍍系統 39 圖3-19金屬蒸鍍系統 40 圖3-20量測手套箱 40 圖3-21半導體參數分析機(HP4145B) 41 圖3-22 AFM工作原理示意圖 42 圖3-23 接觸角示意圖 43 圖4-1未交聯PVA當閘極絕緣層有機薄膜電晶體 46 圖4-2未交聯PVA當閘極絕緣層有機薄膜電晶體之漏電流 47 圖4-3 PVA與PVP薄膜之表面接觸角 47 圖4-4左圖為PVA與右圖PVP薄膜表面型態圖 47 圖4-5 C-F鍵取代OH-鍵示意圖 48 圖4-6 CF4處理PVA過後之電特性 49 圖4-7 CF4處理PVA過後之漏電 50 圖4-8 CF4處理PVA過後之接觸角量測 50 圖4-9 CF4處理PVA過後之FT-IR measurment 50 圖4-10 CF4處理PVA過後之表面粗糙度量測 51 圖4-11 PVA覆蓋不同轉速PVP閘極絕緣層有機薄膜電晶體之電特性曲線比較 52 圖4-12不同轉速之PVP在PVA上的薄膜表面型態圖 52 圖4-13 CF4處理過後雙閘極電晶體電特性圖 53 圖4-14元件縱向漏電圖 54 圖4-15未經處理過之PVA+PVP輸出圖 54 圖4-16經CF4 Plasma 100w輸出圖 55 圖4-17經CF4 Plasma 150W輸出圖 55 圖4-18經CF4 Plasma 200w輸出圖 56 圖4-19 MIM結構元件 57 圖4-20電容量測結果圖 58 圖4-21電容換算閘極絕緣層電容圖 58 圖4-22 SEM厚度量測圖(a) PVA 752nm (b) PVA+CF4 100w 452nm (c) PVA+CF4 150w 403nm (d) PVA+CF4 100w 355nm 60 圖4-23理想電容值與實際量測值比較圖 60 圖4-24 AFM measurement 61 圖4-25厚度影響粗度示意圖 (a)最上層厚度就薄時 (b)最上層較厚時 61 圖5- 1以耐熱膠帶密封避免二次氧化 64 圖5-2 載台高度調整 66 圖5-3 微波介面控制 66 圖5-4 反射功率調整器 67 圖6- 1各種加熱方式之電特性圖 75 圖6-2各種加熱方式之漏電圖 76 圖6-3 未處理之輸出電特性圖 77 圖 6-4真空烤箱輸出電特性圖 77 圖 6-5微波輸出電特性圖 78 圖 6-6 微波通氧輸出電特性圖 78 圖6-7 接觸角量測分別(a) 未經處理(b) 真空烤箱250℃ 5mins(c) 微波65w 5mins (d) 微波通氧65w 5mins 80 圖6-8 FT-IR measurement 80 圖6-9 VGS為-10V之stress量測圖 81 圖6-10 VGS為-10V之Vth shift圖 82 圖6-11 VGS為-20V之stress量測圖 82 圖6-12 VGS為-20V之Vth shift圖 82 圖6-13 AFM measurement 2D 圖(a)Without treatment (b)Microwave+O2 5 mins 83 圖6-14 AFM measurement 3D 圖(a)Without treatment (b)Microwave+O2 5 mins 83 圖6-15 磁滯量測 84 表目錄 表2-1 電晶體種類比較……………………………………………………………….5 表2-2半導體與金屬接面能帶的關係……………………………………………...18 表4-1 CF4處理過後雙閘極電晶體特性………………………………………........56 表6-1各種加熱方式之電特性……………………………………………………...76

    參考文獻
    [1] Qiang Ren, Qingsheng Xu, Hongquan Xia, Xiao Luo, Feiyu Zhao, Lei Sun, Yao Li, “High performance photoresponsive field-effect transistorson MoS2/pentacene heterojunction” Organic Electronics51, p142-148,(2017).
    [2] Wenli Lv , Lili Du , Yingquan Peng , Zhong ZhaoY. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, “Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plastic electronics,” Applied Physics Letters, Vol, 81, p.562 (2002).
    [3] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner,”Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors,” Applied Physics Letters, Vol. 87, p.113501 (2005).
    [4] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee , Y. Yi, M. H. Cho, “Improvement of The Contact Resistance Between ITO and Pentacene Using Various Metal-Oxide Interlayers,” Organic Electronics, Vol. 9, pp. 1140–1145 (2008).
    [5] M. W. Shin, S. H. Jang, “Thermal Analysis of Active Layer in Organic Thin-Flm Transistors,” Organic Electronics, Vol. 13, pp.767–770 (2012).
    [6] C. B. Park, J. D. Lee, “Effect of Stacked Dielectric with High Dielectric Constant and Surface Modification On Current Enhancement in Pentacene Thin-film Transistors,” Current Applied Physics, Vol. 13, pp.170-175 (2013).
    [7] Fu-Chiao Wu1, Bo-Liang Yeh, Tzu-Hsiu Chou, Jen-Sue Chen, Min-Ruei Tsai, Horng-Long Cheng andWei-Yang Chou1 “Improved electrical performance of organic thin-film transistors with modified high-K dielectrics” AM-FPD'17, P-25, p183-185(2017).
    [8] Chang Su Kim, Sung Jin Jo, Jong Bok Kim, Seung Yoon Ryu, Joo Hyon Noh, and Hong Koo Baikb, “Superhydrophobic modification of gate dielectrics for densely packed pentacene thin film transistors,” Applied Physics Letters, Vol. 91, 063503 (2007).
    [9] M.R.Fiorilloa, R.Liguoria, C.Dilettob, E.Bezzeccheria, P.Tassinib, M.G. Maglioneb, P. Maddalenac, C. Minarinib, A. Rubino “Analysis of HMDS self-assembled monolayer Effect on Trap Density in PC70BM n-type Thin Film Transistors through Admittance Studies,” ScienceDirect, Proceedings 4 5053–5059. (2017)
    [10] Bang Joo Song, Kihyon Hong, Woong-Kwon Kim, Kisoo Kim, Sungjun Kim, and
    Jong-Lam Lee “Effect of Oxygen Plasma Treatment on Crystal Growth Mode at Pentacene/Ni Interface in Organic Thin-Film Transistors” J. Phys. Chem. B,114, 14854–14859,2010.
    [11] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou,”Buffer-Layer-Induced Barrier Reduction: Role of Tunneling in Organic Light-Emitting Devices,” Applied Physics Letters, Vol. 84, p.425 (2004).
    [12] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, “Enhancement of Electron Injection in Organic Light-Emitting Devices Using an Ag/Lif Cathode,” Journal of Applied Physics, Vol. 95, p.3828 (2004).
    [13] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, Proceeding Of The IEEE, Vol. 93, p. 1330 (2005).
    [14] C. L Fan, and P. C Chiu, “Performance Improvement of Top-Contact Pentacene-Based Organic Thin-Film Transistors by Inserting an Ultrathin Teflon Carrier Injection Layer,” Japanese Journal of Applied Physics, Vol. 50, p.100203 (2011)
    [15] C. K. Song, M. K. Jung, and B. W. Koo, “Pentacene thin film transistor improved by thermal annealing,” Journal of the Korean Physical Society, Vol. 39, pp. S271-S274, (2001).
    [16] T. Ahn, H. Jung, H. J. Suk, M. H. Yi, “Effect of postfabrication thermal annealing on the electrical performance of pentacene organic thin-film transistors,” Synthetic Metals, Vol. 159, pp. 1277-1280, (2009).
    [17] A.Tsumura, H. Koezuka, T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp, 1210, (1986).
    [18] A. Assadi, C. Svensson, M. Willander, O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53. pp. 195, (1988).
    [19] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [20] Z. Bao, A. Dodabalapur, A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108, (1996).
    [21] H. Sirringhaus, N. Tessler, R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744, (1998).
    [22] F.Ebisawa,T.Kurokawa,S.Nara,“Electrical properties ofpolyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 , (1983).
    [23] J. H. Burroughes, C. A. Jones, R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141, (1988).
    [24] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372, (1993).
    [25] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, P. Alnot, “Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers,” Journal of the American Chemical Society, Vol. 115, pp. 8716, (1993).
    [26] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, F. Garnier, “Polymorphism and Charge Transport in Vacuum-Evaporated Sexithiophene Films,” Chemistry of Materials, Vol. 6, pp. 1809, (1994).
    [27] A. Dodabalapur, L. Torsi, and H. E. Katz, “Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics,” Science, Vol. 268, pp. 270-271, (1995).
    [28] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, “Field-Effect Transistors Comprising Molecular Beam Deposited α-ω-Di-hexyl-hexathienylene and Polymeric Insulators,” Synthetic Metals, Vol. 92, pp. 47, (1998).
    [29] H. E. Katz, L. Torsi, A. Dodabalapur, “Synthesis, Material Properties, and Transistor Performance of Highly Pure Thiophene Oligomers,” Chemistry of Materials, Vol. 7, pp. 2235-2237, (1995).
    [30] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, F. Garnier, “Organic transistors using-octithiophene and, -dihexyl-octithiophene: Influence of oligomer length versus molecular ordering on mobility,” Advanced Material, Vol. 9, pp. 557-561, (1997).
    [31] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene,” Advanced Material, Vol. 9, pp. 389-391, (1997).
    [32] J. H. Schön, Ch. Kloc, B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).
    [33] Y. -Y. Lin, D. J. Gundlach, S. Nelson, T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606, (1997).
    [34] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501, (1996).
    [35] Y. Y. Lin, D. J. Gundlach, T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80, (1996).
    [36] G. Horowitz, X. Peng, D. Fichou, F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424, (1992).
    [37] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, R. M. Fleming, “C60 thin film transistors,” Applied Physics Letter, Vol. 67, pp. 121, (1995).
    [38] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512–515, (1993).
    [39] A. R. Brown, D. M. de Leeuw, E. J. Lous, E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257, (1994)
    [40] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332, (1996).
    [41] G. Guillaud, M. Al Sadound, M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503, (1990).
    [42] Z. Bao, A. J. Lovinger, J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207, (1998).
    [43] H. Fuchigami, A. Tsumura, H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letter, Vol. 63, pp. 1372, (1993).
    [44] Ke Zhou , Huanli Dong , Hao-li Zhang and Wenping Hu “High performance n-type and ambipolar small organic semiconductors for organic thin film transistors,” Phys. Chem. Chem. Phys , Vol. 16, pp. 22448 -22457, (2014).
    [45] J. M . Shaw, and P. F. Seidler, “Organic Electronic: Introduction,”IBM Journal of Research and Development, Vol.45,No.1, pp.3-9(2001).
    [46] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol. 10, pp. 234-238 (1998).
    [47] E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon, “ Physical Review Letters, Vol. 103, pp. 51-61 (1956).
    [48] N. F. Mott, “On the Transition to Metallic Conduction in Semiconductors, “Canadian Journal of Physics. Vol. 34, p. 1356 (1956).
    [49] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors, “ Masters Thesis, University of Cagliari, (2009).
    [50] P. G. Le Comber, and W. E. Spear, “Electronic Transport in Amorphous Silicon Films, “ Physical Review Letters, Vol. 25, p. 509 (1970).
    [51] C.W.Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
    [52] Wei, C. Y., Adriyanto, Lin, F., Y. J., Li, Y. C., Huang, T. J., Chou, D. W., and Wang, Y. H., “Pentacene-based thin-film transistors with a solution-process hafnium oxide insulator” IEEE Electron Device Letters, 2009, 30, 1039–1041.
    [53] B. Kang, M. Jang, Y. Chung, H. Kim, S.K. Kwak, J.H. Oh, K. Cho, “ Enhancing 2D growth of organic semiconductor thin films with macroporous structures via a small-molecule heterointerface” Nature Communications. 5 (2014) 4752
    [54] K.-S. Jang, H.J. Suk, W.S. Kim, T. Ahn, J.-W. Ka, J. Kim, M.H. Yi, Org. “ Surface modification of polyimide gate insulators for solution-processed 2,7-didecyl [1]benzothieno[3,2-b][1]benzothiophene (C10-BTBT) thin-film transistors, “ Electron. 13, 2012, 1665.
    [55] S. H. Lo, D. A. Buchanan, Y. Taur and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's,” IEEE Electron Device Letters, vol. 18, no. 5, pp. 209-211, 1997.
    [56] P. Zurcher, C. J. Tracy, R. E. Jones Jr, P. Alluri, P. Y. Chu, B. Jiang, M. Kim, B. M. Melnick, M. V. Raymond, D. Roberts, T. P. Remmel, T. L. Tsai, B. E. White, S. Zafar and S. J. Gillespie, “Barium Strontium Titanate Capacitors for Embedded Dram,” Materials Research Society Symposium Proceedings, vol. 541, pp. 11-22, 1999.
    [57] A. Grill, “Electrode structures for integration of ferroelectric or high dielectric constant films in semiconductor devices,” Materials Research Society Symposium Proceedings, vol. 541, pp. 89-99, 1999.
    [58] K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” Journal of Materials Research, vol. 11, no. 11, pp. 2757-2776, 1996.
    [59] R Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, “Effects of O2 and H2O in electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, pp. 437-440, (2004).
    [60] D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letter, Vol. 92, pp. 093309, (2008).
    [61] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275, (2006).
    [62] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letter, Vol. 80, pp. 151, (2002).
    [63] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, No. 6, (2001).
    [64] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, No. 2, (2004).
    [65] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-eddect transistor made from solution-procceed organic semiconductors”, Synthetic Metals, Vol. 88, pp. 37-55, (1997).
    [66] David J. Griffiths, Introduction to Electrodynamics,USA(1999)

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE