簡易檢索 / 詳目顯示

研究生: 邱炳嶔
Ping-Chin Chiu
論文名稱: 紫外光/光觸媒程序外加電位處理苯胺水溶液之研究
Treatment of Aniline in Aqueous Solution by UV/TiO2 Process with Applying Bias Potential
指導教授: 顧洋
Young Ku
口試委員: 蔣本基
Pen-Chi Chiang
曾迪華
Dyi-Hwa Tseng
黃炳照
Bing-Joe Hwang
劉志成
Jhy-Chern Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 122
中文關鍵詞: 偏壓光電催化程序光陽極
外文關鍵詞: bias potential, UV/TiO2/bias process, photoanode
相關次數: 點閱:298下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

施加偏壓為一種促進二氧化鈦薄膜之光催化程序的方法。光陽極是以將二氧化鈦塗佈於鈦板上並以白金線連接定電壓儀來作為工作電極處理苯胺水溶液。光陽極在一批式反應器中彎曲貼於反應器內壁,使受光表面積增加;而網狀的不鏽鋼陰極包覆著置有紫外光燈管的石英玻璃可作為本系統的相對電極並且減少光輻射的遮蔽。在本研究中,紫外光/二氧化鈦程序利用苯胺作為污染物來探討pH值、紫外光光強度、苯胺初始值濃度與光陽極燒結溫度等變因。溶液pH值在光催化程序中的影響最大的,而其他的變因則是與文獻的結果相符或是只有輕微影響。在鹼性溶液中,由於有大量的氫氧自由基,苯胺的降解效率較酸性溶液高。在0到1.0V的光電催化程序中,因為施加電壓所增加的降解效率是由於電子電洞對在結合的減少所造成的。而在1.0到2.0V的光電催化程序中所促進的降解效率,則是來自於電解,而且電解所佔的降解效率將隨著電壓的上升而增加。由實驗結果可知,在酸性溶液中,不論在高電壓或是低電壓下,苯胺的降解效率都比在鹼性溶液下高。因此,在2.0V的偏壓下電解是主要降解苯胺的程序,而降解效率也隨著電解質濃度的上升而增加。而在0與1.0V的偏壓下,苯胺將與溶液中的氯離子作競爭吸附,因此隨著電解質濃度的增加,降解效率也隨之降低,而此現象在高電解質濃度的鹼性溶液下更為明顯。此外,在低電解質濃度的鹼性溶液的光電催化程序下,也發現了滴定鹽酸以維持溶液的pH值為一定值,將減少溶液中的氫氧離子而導致降解效率的降低。


Applying bias potential on UV/TiO2 process is one of the methods for enhancing the removal efficiency on TiO2 film. The photoanode made by a TiO2/Ti plate and connected with the Potentialstat by a platinum wire for applying bias potential. In a batch system, the blended photoanode offers a large surface area for UV irradiation and the mesh stainless steel cathode covered on pyrex glass can be a counter electrode and eliminate shield of UV irradiation. In order to investigate the UV/TiO2/bias process, the experiments under various operating conditions to decompose aniline in aqueous solution have examined. Solution pH, light intensity, initial concentration of aniline and sintering temperature of photoanode were explored by UV/TiO2 process. Among these variables, solution pH was most significant for removal efficiency and the other variables were conformed to literature or slightly affected. In alkaline solution, the removal efficiency was higher than in acidic solution due to plenty of hydroxide radicals. From the results of effect of solution pH, the effect of bias potential and electrolyte concentration in UV/TiO2/bias process was investigated in acidic and alkaline solution. The removal efficiency of UV/TiO2/bias process by applying bias potential from 0 to 1.0V were enhanced in acidic and alkaline solutions due to reduced the electron-hole recombination. As bias potential applied from 1.0 to 2.0V, the electrolysis involved the UV/TiO2/bias process and the contribution of electrolysis increased with increasing bias potential. In acidic solution, whether in low or high bias potential, the enhancement was greater than in alkaline solution. Under 2.0V bias potential, the removal efficiency increased with electrolyte concentration because electrolyte affected the electrolysis directly. Under 0 and 1.0V bias potential, the aniline would compete with chloride ions to lessen the removal efficiency, especially obvious in alkaline solution and high electrolyte concentration. At low electrolyte concentration and alkaline solution, titration of HCl to keep pH at a constant value would decrease the amount of hydroxide ions to result in decreasing of removal efficiency.

Acknowledgement…….……..…………………………………………………………..….…….I Abstract……………………………………………..…………………………………..….…….II Abstract (Chinese)…………………………………..…………………………………..…...…III Table of Content…….………………………………..…………………...…………..….…….IV Table of Figures……….………………….…………..…………………………………..…..VII Table of Tables…….…………………….…………..…………………………………...….…XII Table of Symbols……………………….…………………………………………………….XIV Chapters Chapter 1 Introduction…………………….…..…….………….….……………………..1 Chapter 2 Review of Literature………………………………………………….…….3 2.1 Photocatalytic Reactor…………………………….……………………….……...3 2.1.1 Photocatalytic Reactor……………………….…….……………….……….3 2.1.2 Coating of Photocatalysts……………...……………………………………4 2.1.3 Light Source…………………..…………………………………………….6 2.2 Photocatalytic Process (UV/TiO2 Process)…….….………………………….....8 2.2.1 Photocatalytic Properties of TiO2…………………………………..……….8 2.2.2 Mechanism of Photocatalytic Process (UV/TiO2 Process)……………...…10 2.2.3 Modification of TiO2 Surface…...…………………………………………10 2.2.4 Applying Bias Potential on TiO2…………………………………………..11 2.2.5 Review of Photocatalytic process (UV/TiO2 Process) in Literature…….12 2.2.5.1 Effect of Solution pH…….………………………………………...12 2.2.5.2 Effect of Initial concentration………………………………….…..15 2.2.5.3 Effect of Dissolved Oxygen…………………….………………..15 2.2.5.4 Effect of Light Intensity…………………….……………………..16 2.3 Photoelectrocatalytic Process (UV/TiO2/Bias Process)….……………………..18 2.3.1 Mechanism of UV/TiO2/bias Process…….………………………...18 2.3.2 Review of Photoelectrocatalytic Process (UV/TiO2/bias Process) in Literature…………………………………………………………………20 2.3.2.1 Effect of Bias Potential………………………………………….…20 2.3.2.2 Effect of Electrolyte Concentration…………………….………….21 2.3.3 Review of Photoelectrocatalytic Process (UV/TiO2/bias process) in Our Group…………………………………………………………………….23 2.4 Kinetic Model……………………………………………………………………...25 Chapter 3 Experimental Design…………………………………………………………...27 3.1 Instruments…………………………………………………………………………27 3.2 Chemicals…………………………………………………………………………..28 3.3 Apparatus…………………………………………………………………………..30 3.4 Experimental Framework………………………………………………………….33 3.4.1 Preparation of TiO2/Ti Photoanode……………………………….……..34 3.4.2 Reactor Design……………………………………………………………..36 3.4.3 Photoelectrocatalytic Process (UV/TiO2/bias Process).......….……...37 3.4.4 Analytic Methods…………………………………………………………..39 3.5 Kinetic Model……………………………………………………………………...44 Chapter 4 Results and Discussion…………………………………………………………45 4.1 Background Experiments………………………………………………………….45 4.1.1 Adsorption of Aniline……………...………………………………………46 4.1.2 Evaporation of Aniline...……………………….…………………………..46 4.1.3 UV Photolysis of Aniline..………………………………………………46 4.2 Photocatalytic Process (UV/TiO2 Process)…………………………………….…..51 4.2.1 Effect of Solution pH………………………………………………………51 4.2.2 Effect of Light Intensity………….………….……………………………..54 4.2.3 Effect of Initial Concentration of Aniline…………………….……….…58 4.2.4 Kinetic of UV/TiO2 Process…………………………………………….70 4.3 Photoelectrocatalytic Process (UV/TiO2/bias Process)…………………....………74 4.3.1 Effect of Bias Potential ………………………….……….……………74 4.3.2 Effect of Electrolyte Concentrations............……..…………………….80 4.3.3 Kinetic of UV/TiO2/bias Process………………...…………………….88 Chapter 5 Conclusions and Recommendations………….....……………………………93 Reference……………………..……………………………………………………………95 Appendix A (The figures of experiments)…………………………………..........………103 Curriculum Vitae………………………………………………….….……………….…122

An, T.C., X.H. Zhu and Y. Xiong, “Feasibility Study of Photoelectrochemical Degradation of Methylene Blue with Three-Dimensional Electrode-Photocatalytic Reactor,” Chemosphere, Vol.46, pp. 897-903 (2002)
Al-Ekabi, H. and N. Serpone, “Kinetic studies in Heterogeneous Photocatalysis. 1. Photocatalytic Degradation on Chlorinated Phenols in Aerated Aqueous Solutions over TiO2 Supported on a Glass Matrix,’’ J. Phy. Chem, Vol. 92, pp.5726-5731(1988)
Bard, A.J. and L.R. Faulkner, “Electrochemical Methods,” John Wiley and Sons, pp.639 (1980)
Brillas, E., R.M. Bastida and E. Llosa, “Electrochemical Destruction of Aniline and 4-Chloroaniline for Wastewater Treatment Using a Carbon-PTFE O2-Fed Cathode,” Electrochemical Science and Technology, Vol.142 (6), pp.1733-1741 (1995)
Brillas, E., E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech and J. Casado, “Aniline Mineralization by AOP's: Anodic Oxidation, Photocatalysis, Electro-Fenton and Photoelectro-Fenton Processes,” Appl. Catal. B: Environ., Vol.16 (1), pp.31-42 (1998)
Byrne, J.A. and B.R. Eggins, “Photoelectrochemistry of Oxalate on Particulate TiO2 Electrodes,”J. Electroanal. Chem., Vol.457, pp.61-72 (1998)
Canle L., M., J.A. Santaballa and E. Vulliet, “On the Mechanism of TiO2-Photocatalyzed Degradation of Aniline Derivatives,” J. Photoch. Photobio. A Chem., Vol.175, pp.192-200 (2005)
Chakrabarti, S. and B. K. Dutta, “Photocatalytic Degradation of Model Textile Dyes in Wastewater Using ZnO as Semiconductor Catalyst,” J. Hazard. Mater., Vol.B112, pp.269-278 (2004)
Chen, H.W., Y. Ku and Y.L. Kuo, “Effect of Pt/TiO2 Characteristics on Temporal Behavior of o-Cresol Decomposition by Visible Light-induced Photocatalysis,” Water Res., Vol.41, pp.2069-2078 (2007)
Choi, W. and M.R. Hoffmann, “Novel Photocatalytic Mechanisms for CHCl3, CHBr3, and CCl3CO2 Degradation and the Fate of Photogenerated Trihalomethyl Radicals on TiO2,” Environ. Sci. Technol., Vol.31 (1), pp. 89-95 (1997)
D’Oliveira, J.C., G. Al-Sayyed and P. Pichat, “Photodecolorization of 2- and 3-Chlorophenol in TiO2 Aqueous Suspensions,” Environ. Sci. Technol., Vol.24 (7), pp.990-996 (1990)
Duonghong, D., J. Ramsden and M. Gratzel, “Dynamics of Interfacial Electron-Transfer Processes in Colloidal Semiconductor Systems,” J. Am. Chem. Soc., Vol.104, pp. 2977-2985 (1982)
Fernandez, A., G. Lassaletta, V.M. Jimenze, A. Justo, A. R.Gonzalze-Elipe, J. M. Herrmann, H. Tahiri and Y. Ait-Ichou, “Preparation and Characterization of TiO2 Photocatalysts Supported on Various Rigid Supports (Glass, Quartz and Stainless Steel) Comparative Studies of Photocatalytic Activity in Water Purification,” Appl. Catal. B: Environ., Vol.7, pp.49-63 (1995)
Fogler, H.S., “Elements of Chemical Reaction Engineering 3rd Edition,” Prentice-Hall International, Inc. (1999)
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol.238, pp.37-38 (1972)
Gao, R., A. Safrany and J. Rabani, “Reactions of TiO2 Excess Electron in Nanocrystallite Aqueous Solutions Studied in Pulse and Gamma-Radiolytic Systems,” Radiat. Phys. Chem., Vol.67, pp.25-39 (2003)
Hirano, K., K. Inoue. and T. Yatsu, “Photocatalysed Reduction of CO2 in Aqueous TiO2 Suspension Mixed with Copper Powder,” J. Photochem. Photobiol. A: Chem., Vol.64, pp.255-258 (1992)
Hoffmann, M.R., S.T. Martin, W. Choi and D.W. Bahnemann, ”Environmental Applications of Semiconductor Photocatalysis,” Chem. Rev., Vol.95, pp.69-96 (1995)
Houas, A., H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, and J. M. Herrmann, “Photocatalytic Degradation Pathway of Methylene Blue in Water,” Appl. Catal. B: Environ., Vol.31, pp.145-157 (2001)
Hung, C. H. and B. J. Marinas, “Role of Chlorine and Oxygen in the Photocatalytic Degration of Trichloroethylene Vapor on TiO2 Films,” Environ. Sci. Technol., Vol.31, pp.562-568 (1997)
Jacoby, W.A., M.R. Nimlos and D.M. Blake, “Products, Intermediates, Mass Balances, and Reaction Pathway for the Oxidation of Trichloroethylene in Air via Heterogeneous Photocatalysis,” Environ. Sci. Technol., Vol.28 (9), pp.1661-1673 (1994)
Jiang, D., H. Zhao, S. Zhang, R. John and G. D. Will, “Photoelectrochemical Measurement of Phthalic Acid Adsorptionon Porous TiO2 Film Electrodes,” J. Photochem. Photobio. A:Chem., Vol.156, pp.201-206 (2003)
Jorge, S.M.A., J.J. Sene and A.O. Florentino, “Photoelectrocatalytic Treatment of p-nitrophenol Using Ti/TiO2 Thin-Film Electrode,” J. Photochem. Photobio. A:Chem., Vol.174, pp.71-75 (2005)
Kaneco S., H. Katsumata, T. Suzuki and K. Ohta, “Photoelectrocatalytic Reduction of CO2 in LiOH/Methanol at Metal-Modified p-InP Electrodes,” Appl. Catal. B: Environ., Vol.64 pp.139–145 (2006)
Kaneco S., H. Kurimoto, K. Ohta, T. Mizuno and A. Saji, “Photocatalytic Reduction of CO2 Using TiO¬2, Powders in Liquid CO2 Medium,” J. Photochem. Photobio. A:Chem., Vol.109, pp.59-63 (1997)
Kim, D.H. and M.A. Anderson, “Photoelectrocatalytic Degradation of Formic Acid Using a Porous TiO2 Thin- Film Electrode,” Environ. Sci. Technol., Vol.28, pp.479-403 (1994)
Kim, K.W., E.H. Lee, Y.J. Kim, M.H. Lee and D.W. Shin, “A Study on Characteristics of an Electrolytic-Photocatalytic Reactor Using an Anode Coated with TiO2,” J. Photochem. Photobio. A:Chem., Vol.161, pp.11–20 (2003)
Kormann, C., D. W. Bahnemann and M.R. Hoffmann, “Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO2 Suspensions,” Environ. Sci. Technol., Vol.25, pp.494-500 (1991)
Ku, Y., C.M. Ma, and Y.S. Shen, “Decomposition of Gaseous Trichloroethylene in a Photoreactor with TiO2-Coated Nonwoven Fiber Textile,” Appl. Catal. B: Environ., Vol.34, pp.181-190 (2001)
Ku, Y, Y.C. Lee and W.Y. Wang, “Photocatalytic Decomposition of 2-Chlorophenol in Aqueous Solution by UV/TiO2 Process with Applied External Bias Voltage,” J. Hazard. Mater., Vol.B138, pp.350-356 (2006)
Kumar, A. and N. Mathur, “Photocatalytic Degradation of Aniline at the Interface of TiO2 Suspensions Containing Carbonate Ions,” J.Colloid Interf. Sci., Vol.300 (1), pp.244-252 (2006)
Kumar, A. and Mathur, N., “Photocatalytic Oxidation of Aniline Using Ag+-Loaded TiO2 Suspensions,” Appl. Catal. A: Gen., Vol.275, pp.189-197 (2004)
Kumazawa, H., M. Inoue and T. Kasuya, “Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds,” Ind. Eng. Chem. Res., Vol.42, pp.3237-3244 (2003)
Lakshmi, S., R. Renganathan and S. Fujita, “Study on TiO2-Mediate Photocatalytic Degradation of Methylene Blue,” J. Photochem. Photobio. A:Chem., Vol.88, pp.163-167 (1995)
Li, X.Z., H.L. Liu, P.T. Yue and Y.P. Sun, “Photoelectrocatalytic Oxidation of Rose Bengal in Aqueous Solution Using a Ti/TiO2 Mesh Electrode,” Environ. Sci. Technol, Vol.34, pp.4401-4406 (2000)
Li, X.Z., F.B. Li, C.M. Fan and Y.P. Sun, “Photoelectrocatalytic Degradation of Humic Acid in Aqueous Solution Using a Ti/TiO2 Mesh Photoelectrode,” Water Res., Vol.36, pp.2215-2224 (2002)
Li, G., J. Qu, X. Zhang, H. Liu and H. Liu, “Electrochemically Assisted Photocatalytic Degradation of Orange II: Influence of Initial pH Values,” J. Mol. Catal. A: Chem., Vol.259, pp.238-244 (2006)
Ling, C. M., A. R. Mohamed and S. Bhatia, “Performance of Photocatalytic Reactors Using Immobilized TiO2 Film for the Degradation of Phenol and Methylene Blue Dye Present in Water Stream,” Chemosphere, Vol.57, pp.547-554 (2004)
Leng, W.H., W.C. Zhu, J. Ni, Z. Zhang, J.Q. Zhang and C.N. Cao, “Photoelectrocatalytic Destruction of Organics Using TiO2 as Photoanode with Simultaneous Production of H2O2 at the Cathode,” Appl. Catal. A: Gen., Vol.300, pp.24-35 (2006)
Leng, W.H., Z. Zhanf and J.Q. Zhang, “Photoelectrocatalytic Degradation of Aniline over Rutile TiO2/Ti Electrode Thermally Formed at 600℃,” J. Mol. Catal. A: Chem., Vol.206, pp.239-252 (2003)
Leng, W., H. Liu, S. Cheng, J. Zhang and C. Cao, “Kinetics of Photocatalytic Degradation of Aniline in Water over TiO2 Supported on Porous Nickel,” J. Photochem. Photobio. A:Chem., Vol.131 (1-3), pp.125-132 (2000)
Lund, H. and M.M. Baizei, “Orgabic Electrochemistry,”Marcel Dekker, Inc. New York, New York (1991)
Ma, C.M., Y. Ku, F.T. Jeng, and Y.L. Kuo, “Effect of Platinum on the Decomposition Efficiency and Apparent Quantum Yield of Photocatalysis of Isopropanol in an Annular Photoreactor,” Journal of Advanced Oxidation Technologies, Vol.10 (2), pp.361-368 (2007)
Mills, A. and S. Hunte, “An Overview of Semiconductor Photocatalysis,” J. Photochem. Photobio. A:Chem., Vol.108, pp.1-35 (1997)
Mills, A., R.H. Davies and D. Worsley, “Water Purification by Semiconductor Photocatalysis,” Chem. Soc. Rev., Vol.22, pp.417-425 (1993)
Mills, A. and J. Wang, “Photobleaching of Methylene Blue Sensitised by TiO2: an Ambiguous System?,” J. Photochem. Photobio. A:Chem., Vol.127, pp.123-134 (1999)
Okamoto, K.I., Y. Tamamoto, H. Tanaka and A. Itaya, “Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 powder,” Bull. Chem. Soc. Jpn., Vol.58, pp.2023-2028 (1985)
Obee, T.N. and S.O. Hay, “Effects of Moisture and Temperature on the Photooxidation of Ethylene on Titania,” Environ. Sci. Technol., Vol.31, pp.2034-2038 (1997)
Ollis, D.F., E. Pelizzetti and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environ. Sci. Technol., Vol.25, pp.1523-1529 (1991)
Osugi, M.E., G.A. Umbuzeiro, M.A. Anderson, and M.V.B. Zanoni, “Degradation of Metallophtalocyanine Dye by Combined Processes of Electrochemistry and Photoelectrochemistry,” Electrochim. Acta, Vol.50, pp.5261-5269 (2005)
Piccinini, P., C. Minero, M. Vincenti and E. Pelizzetti, “Photocatalytic Mineralization of Nitrogen-Containing Benzene Derivatives,” Catal. Today, Vol.39 (3), pp.187-195 (1997)
Sánchez, L., J. Peral, and X. Domènech, “Photocatalyzed Aestruction of Aniline in UV-illuminated Aqueous TiO2 Suspensions,” Electrochim. Acta, Vol.42 (12), pp.1877-1882 (1997)
Sakai, H., H. Kawahara, M. Shimazaki and M. Abe, “Preparation of Ultrafine Titanium Dioxide Particles Using Hydrolysis and Condensation Reactions in the Inner Aqueous Phase of Reversed Micelles: Effect of Alcohol Addition,’’ Langmuir, Vol.14, pp.2208-2212 (1998)
Serpone, N. and A.V. Emeline, “Suggested Terms and Definitions in Photocatalysis and Radiocatalysis,” Int. J. Photoenergy, Vol. 4, pp.91-131 (2002)
Sopyan, I., M. Watanabe, S., Murasawa, K. Hashimoto and A. Fujishima, “A Film-Type Photocatalyst Incorporating Highly Active TiO2 Powder and Fluororesin Binder: Photocatalytic Activity and Long-Term Stability,” J. Electroanal. Chem., Vol.415 (1-2), pp.183-186 (1996)
Selcuk, H., J.J. Sene, and M.A. Anderson, “Photoelectrocatalytic Humic Acid Degradation Kinetics and Effect of pH, Applied Potential and Inorganic Ions,” J. Chem. Technol. Biotechnol., Vol.78, pp.979-984 (2003)
Selcuk, H. and M.A. Anderson, “Effect of pH, Charge Separation and Oxygen Concentration in Photoelectrocatalytic System: Active Chlorine Production and Chlorate Formation,” Desalination, Vol.176, pp.219-227 (2005)
Sun, C.C. and T.C. Chou, “Electrochemically Promoted Photocatalytic Oxidation of Nitrite Ion by Using Rutile Form of TiO2/Ti Electrode,” J. Mol. Catal. A-Chem., Vol.151, pp.133-145 (2000)
Villacres, R., S. Ikeda, T. Torimoto and B. Ohtani, “Development of a Novel Photocatalytic Reaction System for Oxidative Decomposition of Volatile Organic Compounds in Water with Enhanced Aeration,” J. Photochem. Photobio. A:Chem., Vol.160, pp.121-126 (2003)
Vinodgopal, K., U. Stafford, K.A. Gray and P.V. Kamat, “Electrochemically Assisted Photocatalysis 2: The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized TiO2 Particulate Films,” J. Phy. Chem, Vol.98, pp.6797-6803 (1994)
Vinodgopal, K., S. Hotchandani and P.V. Kamat, “Electrochemically Assisted Photocatalysis 1: TiO2 Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol,” J. Phy. Chem., Vol.97, pp.9040-9044 (1993)
Waldner, G., M. Pourmodjib, R. Bauer and M. Meumann-Spallart, “Photoelectrocatalytic Degradation of 4-Chlorophenol and Oxalic Acid on Titanium Dioxide Electrodes,” Chemosphere, Vol.50, pp.989-998 (2003)
Wang, W. and Y. Ku, “The Light Transmission and Distribution in an Optical Fiber Coated with TiO2 Particles,” Chemosphere, Vol.50 (8), pp.999-1006 (2003)
Wang, W.Y. and Y. Ku, “Photocatalytic Degradation of Reactive Red 22 in Aqueous Solution by UV-LED Radiation,” Water Res., Vol.40 (12), pp.2249-2258 (2006)
Watanabe, T., A. Kitamura, E. Kojima, C. Nakayama, K. Hashimoto and A. Fujishima, “Photocatalytic Activity of TiO2 Thin Film under Room Light,” Photocatalytic Purification and Treatment of Water and Air, Elsevier, New York, USA 747-752 (1992)
Xu, Y. and C.H. Langford, “Enhanced Photoactivity of a Titanium (IV) Oxide Supported on ZSM5 and Zeolite A at Low Coverage,” J. Phys. Chem., Vol.99, pp.11501-11507(1995)
Yatmaz. H.C., A. Akyol and M. Bayramoglu, “Kinetics of the Photocatalytic Decolorization of an Azo Reactive Dye in Aqueous ZnO Auspensions,” Ind. Eng. Chem., Vol.43 (19), pp.6035-6039(2004)
Zainal, Z., C.Y. Lee, M.Z. Hussein, A. Kassim and N.A. Yusof, “Effect of Supporting Electrolytes in Electrochemically-Assisted Photodegradation of an Azo Dye,” J. Photochem. Photobio. A:Chem., Vol.172, pp.316-321 (2005)
Zanoni M.V.B., J.J. Sene and M.A. Adnerson, “Photoelectrocatalytic Degradation of Remazol Brilliant Orange 3R on Titanium Dioxide Thin-Film Electrodes,” J. Photochem. Photobio. A:Chem, Vol.157, pp.55-63 (2003)
Zhang, T., T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, and N. Serpone, “ Photooxidative N-demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation,” J. Photochem. Photobio. A:Chem., Vol.140, pp.163-172 (2001)
王文(Wang, W.) “以光纖反應器進行紫外線光觸媒程序分解氣相中苯之研究” 國立台灣科技大學化學工程技術研究所博士論文,台灣,台北 (2003)
王國華(Wang, K.) “以UV/TiO2 程序處理氣相中三氯乙烯之研究”國立中興大學環境工程學系博士論文”台灣,台中 (1998)
吳昌晏(Wu, C.Y.) “以紫外線/氧化鋅程序分別處理含甲酚及EDTA水溶液反應行為之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2005)
馬志明(Ma C.M.) “以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (1998)
陳俊翔(Chen, J.S.) “二氧化鈦觸媒製備對氣相苯及甲苯光催化分解之影響”國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2000)
曾焜煜(Tseng. K.Y.) “以紫外線/光觸媒程序處理氣相丙酮反應行為之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2003)
趙鵬文(Chao, P.W.) “以UV/TiO2程序處理器相中三氯乙烯之研究”國立中興大學環境工程學系碩士論文,台灣,台中 (1999)
梁乃允(Liang, N.I.) “納米二氧化鈦透明結晶膜之製作及光催化應用”國立中央大學化學工程研究所碩士論文,台灣,桃園 (1999)
黃仲仁(Hwang, C.J.) “以陽極氧化法研製二氧化鈦電極”國立台灣工業技術學院化學工程技術研究所碩士論文,台灣,台北 (1990)
黃冠誌(Hwang K.C.) “電化學陽極氧化法被二氧化鈦薄膜”國立中興大學材料工程學研究所碩士論文,台灣,台中 (2002)
鄭世崧(Cheng S.S.) “陽極氧化二氧化鈦電極之光電化學特性”國立台灣工業技術學院化學工程技術研究所碩士論文,台灣,台北 (1992)
楊明倫(Yang, M.L.) “紫外線/光觸媒程序外加電位處理含有機染料水溶液之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2006)
侯韋銘(Hou, W.M.) “溶膠凝膠法合成鈦酸鑭在紫外光下分解染料水溶液之研究” 國立台灣科技大學化學工程技術研究所碩士論文,台灣,台北 (2007)
李玉鈞(Li, Y.C.) “外加電位及披覆鉑對UV/TiO2程序處理含2-氯酚水溶液之影響”國立台灣工業技術學院化學工程技術研究所碩士論文,台灣,台北 (2001)
王文裕(Wang, W.Y) “二氧化鈦光電特性及染料於光觸媒膜反應器之分解效率” 國立台灣科技大學化學工程系博士論文,台灣,台北 (2006)
陳華偉(Chen, H.W.) “以紫外光發光二極體/光觸媒程序處理含甲酚水溶液之研究” 國立台灣科技大學化學工程系博士論文,台灣,台北 (2007)

QR CODE