簡易檢索 / 詳目顯示

研究生: 王建偉
Jian-Wei Wang
論文名稱: 五相開關型磁阻電動機驅動器研製
Development of Five-phase Switched Reluctance Motor Drives
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 吳瑞南
Ruay-Nan Wu
葉勝年
Sheng-Nian Yeh
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: 五相開關型磁阻電動機低電磁轉矩漣波二相電流同時激磁開關型磁阻發電機模式
外文關鍵詞: five-phase switched reluctance motor, low electromagnetic torque ripple, two-phase excitation, regeneration mode
相關次數: 點閱:240下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製五相開關型磁阻電動機的設計及驅動系統。開關型磁阻電動機的轉子不需額外的激磁,具有結構簡單、故障容許度高之優點。但其缺點為電磁轉矩漣波大,產生高噪音。為了降低其電磁轉矩漣波,此開關型磁阻電動機將選用五相繞組結構,及採用二相同時激磁控制策略,以降低換相時的電磁轉矩抖動。
    在五相開關型磁阻電動機控制方面,採用霍爾效應感測元件的信號以偵測每相的激磁區間。使用二相激磁及電流磁滯控制策略,規劃每相電流形狀,不僅可提高輸出功率,亦能改善電磁轉矩的漣波成分。
    另一方面,依據電感對轉子角位置的導數為正或負值,以進行電動機模式或發電機模式運轉,在煞車時以發電機模式操作,將機械慣量所儲有的能量轉換為電氣能量回收至直流電源側,提高運轉效益。在實體製作方面,以16位元的單晶片微控制器配合數位邏輯電路為控制核心,轉速及電流控制則皆由C語言完成。
    本文已完成轉速閉迴路具電流磁滯控制。在額定轉速1,500rpm、額定轉矩2.0 N-m下,實測結果顯示兼具電流磁滯控制之整體系統系統效率為53% ,較諸無煞車能量回收之51% ,而轉矩漣波亦由23.2% 降至18% 。在煞車能量回收方面,當轉速由1,500 rpm降至0 rpm,功率轉換器的輸出能量為110.1 J,而回收能量為61.57 J,能量回收率達56%。總之,系統實測驗證了本文控制策略的有效性。


    The thesis aims to complete the design of a five-phase switching reluctance motor and drive system. The switching reluctance motor has no excitation in the rotor, thereby yielding the advantages of simpler structure and high-ranged fault tolerance. It, however, has large electromagnetic torque ripple, resulting in high noise. To reduce this torque ripple occurred from the phase change of the excitation, control strategy of five-phase winding structure with two-phase excitation is proposed.
    In the five-phase switching reluctance motor control, hall-effect sensors are used to detect each phase of the excitation range. Using the two-phase excitation and current hysteresis control strategy to shape the current waveform, one can not only increase the output power, but also reduce the electromagnetic torque ripple.
    On the other hand, depending on whether the derivative of the per-phase self-inductance with respect to rotor position is positive or negative, the reluctance motor can operate in the motor or generator mode, respectively. The motor works in generator mode when breaking, the inertia energy is then converted to electrical energy and store in the dc bank to improve operating efficiency. The system is realized by using a 16-bit microcontroller as the control core. Besides, the rotation speed and current controller are compiled by C language.
    A closed-loop speed control system of five-phase reluctance motor with current hysteresis control is completed. Experimental results show that under the rated speed of 1,500 rpm and the rated torque of 2.0 N-m, the overall efficiency is 53% and 51% with and without current hysteresis control, respectively, with the corresponding torque ripple reduced from 23.2% to 18%. In addition, braking operation from rated speed to standstill yields an energy regeneration of 61.6 J over the output energy of 110.1 J from five-phase power converter, resulting in an energy saving of 56%. In short, practical evaluations verify the effectiveness of the proposed control strategies.

    中文摘要 I 英文摘要 II 誌  謝 III 目  錄 IV 符號索引 VI 圖表索引 VIII 第1章 緒論 1 1.1 動機及目的 1 1.2 文獻探討 2 1.3 本文的架構及特色 4 1.4 本文大綱 6 第2章 五相開關型磁阻電動機結構及模式 7 2.1 前言 7 2.2 開關型磁阻電動機簡介 7 2.3 開關型磁阻電動機的結構 9 2.4 五相開關型磁阻電動機等效數學模式 13 2.4.1 電壓及磁通鏈方程式 13 2.4.2 開關型磁阻電動機的電磁轉矩 15 2.5 結語 15 第3章 五相開關型磁阻電動機控制策略 16 3.1 前言 16 3.2 開關型磁阻電動機驅動器之功率轉換器 16 3.3 五相開關型磁阻電動機的控制策略 18 3.4 轉速控制策略 26 3.5 五相開關型磁阻電動機之電流閉迴路控制策略 28 3.6 結語 29 第4章 實體製作及實測 30 4.1 前言 30 4.2 五相磁阻電動機的實體製作 30 4.2.1 五相開關型磁阻電動機之結構 30 4.2.2 五相開關型磁阻電動機之各相自感量測 34 4.3 硬體電路架構 35 4.3.1 數位控制器的介面電路 35 4.3.2 轉子角位置回授裝置 36 4.3.3 電流回授電路規劃 37 4.3.4 閘極驅動電路規劃 38 4.3.5 複雜型可程式邏輯元件電路規劃 39 4.4 軟體規劃 42 4.5 實測結果 44 4.5.1 五相開關型磁阻電動機實測 44 4.5.2 兩相同時激磁實測結果 45 4.6 結語 55 第5章 結論與建議 56 5.1 結論 56 5.2 建議 57 參考文獻 58

    [1] R. Krishnan and P. Materu, “Measurement and instrumentation of a switched reluctance motor,” IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 116-121, 1989.
    [2] 張家銘,開關式磁阻馬達的設計與特性分析,逢甲大學電機工程學研究所碩士論文,民國九十三年。
    [3] R. M. Davis, “Variable reluctance rotor structures-their influence on torque production,” IEEE Transactions on Industrial Electronics, vol. 39, no. 2, pp. 168-174, 1992.
    [4] M. Moallem, C. M. Ong and L. E. Unnewehr, “Effect of rotor profiles on the torque of a switch reluctance motor,” IEEE Industry Applications Society Annual Meeting, vol. 28, no. 2, pp. 247-253, 1990.
    [5] H. C. Lovatt and J. M. Stephenson, “Influence of number of poles per phase in switched reluctance motors,” IEEE Proceedings-Electric Power Applications, vol. 139, no. 4, pp. 307-314, 1992.
    [6] R. Robinovici, “Scaling of switched reluctance motors,” IEEE Proceedings-Electric Power Applications, vol. 142, no. 1, pp. 1-4, 1995.
    [7] J. Li, H. X. Sun and Y. Liu ,“New rotor structure mitigating vibration and noise in switched reluctance motor,” International Conference on Information, Networking and Automation, vol. 2, pp.80 -84, 2010.
    [8] J. M. Stephenson and M. A. El-Khazendar, “Saturation in doubly salient reluctance motors,” IEEE Proceedings-Electric Power Applications, vol. 136, no. 1, pp. 50-58, 1989.
    [9] A. M. Michaelides and C. Pollock, “Effect of end core flux on the performance of the switched reluctance motor,” IEEE Proceedings-Electric Power Applications, vol. 141, no. 6, pp. 308-316, 1994.
    [10] R. Krishnan, R. Arumugam and J. F. Lindsay, “Design procedure for switched-reluctance motors,” IEEE Transactions on Industry Applications, vol. 24, no. 3, pp. 456-461, 1988.
    [11] R. Krishnan and R. A. Bedingfield, “Dynamic analysis of an SRM drive system,” IEEE Industry Applications Society Annual Meeting, vol. 1, pp. 265-271, 1991.
    [12] G. E. Dawson, A. R. Eastham and J. Mizia, “Switched-reluctance motor torque characteristics : finite-element analysis and test results,” IEEE Transactions on Industry Applications, vol. 23, no. 3, pp. 532-537, 1987.
    [13] M. Ehsani, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, 1993.
    [14] J. Kim, K. Ha and R. Krishnan “Single-controllable-switch-based switched reluctance motor drive for low cost variable-speed applications,” IEEE Transactions on Power Electronics, vol. 27, no. 1, pp 379 - 387, 2012.
    [15] Sindhuja, S.; Susitra, D., "Design of a novel high grade converter for switched reluctance motor drive using component sharing," Energy Efficient Technologies for Sustainability (ICEETS), 2013 International Conference on , vol., no., pp.1174,1178, 2013.
    [16] M. Ehsani, I. Husdin, K. R. Ramini and J. H. Galloway, “Dual-decay converter for switched reluctance motor drives in low-voltage applications,” IEEE Transactions on Power Electronics, vol. 8, no. 2, pp. 224-230, 1993.
    [17] Gameiro, N.S.; Cardoso, A.J.M., "Fault tolerant power converter for switched reluctance drives," Electrical Machines, 2008. ICEM 2008. 18th International Conference on , vol., no., pp.1,6, 2008.
    [18] S. Chan and H. R. Bolton, “Performance enhancement of single phase switched-reluctance motor by dc link voltage boosting,” IEEE Proceedings-Electric Power Applications, vol. 140. no. 5, pp. 912-921, 1997.
    [19] M. Asgar, E. Afjei, A. Siadatan and Ali Zakerolhosseini, “A new modified asymmetric bridge drive circuit switched reluctance motor,” Circuit Theory and Design, 2009. ECCTD 2009. European Conference on, pp. 539 - 542, 2009.
    [20] Baiming Shao; Lukic, S.M.; Emadi, A., "A digital current control for switched reluctance motor drives," Industrial Electronics (ISIE), 2010 IEEE International Symposium on , vol., no., pp.1163,1168, 2010.
    [21] Guo Wei; Zhan Qianghua; Ma Zhiyuan, "A new current control mode for switched reluctance motor drive with DSP controller," Electrical Machines and Systems, 2001. ICEMS 2001. Proceedings of the Fifth International Conference on , vol.2, no., pp.1017,1021 vol.2, 2001.
    [22] Hao Chen; Dong Zhang; Zi-Yue Cong; Zhi-Feng Zhang, "Fuzzy logic control for switched reluctance motor drive," Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on , vol.1, no., pp.145,149 vol.1, 2002.
    [23] 王順泰,數位控制之開關型磁阻馬達驅動系統研製,國立台灣科技大學電機工程研究所碩士論文,民國九十一年。
    [24] 柯柏年,單相昇壓型交流-直流功率轉換器之開關型磁阻電動機驅動系統研製,國立台灣科技大學電機工程研究所碩士論文,民國九十四年。
    [25] 陳佑鳴,具電流控制之四相開關型磁阻電動機驅動系統研製,國立台灣科技大學電機工程研究所碩士論文,民國一百零二年。
    [26] 侯俊宇,開關型磁阻發電機之建構及其閉迴路控制研究,國立清華大學電機工程研究所碩士論文,民國九十四年。
    [27] 陳重嘉,低轉矩漣波之四相開關型磁阻電動機驅動器研製,國立台灣科技大學電機工程研究所碩士論文,民國一百零三年。
    [28] 林才勝,具混合式儲能源及插入式市電能源補充之風力開關式磁阻發電機為主直流微電網,國立清華大學電機工程學系碩士論文,民國一百零三年。
    [29] Coelho, A.; Oliveira, E.S.L.; Suetake, M.; Aguiar, M.L., "Experimental performance comparison between singlephase and three-phase Swiched Reluctance Generator," Power Electronics Conference (COBEP), 2011 Brazilian , vol., no., pp.479,485, 2011.
    [30] Chen, H.; Ju, X., "Fuzzy Logic Control For Switched Reluctance Variable Speed Linear Generator System," Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES , vol., no., pp.1,4, 2005

    QR CODE