簡易檢索 / 詳目顯示

研究生: 羅 莉
Ririt - Aprilin Sumarsono
論文名稱: 考慮鋼筋腐蝕RC建築物之耐震生命週期性能評估
Evaluation of Life-cycle Seismic Performance for Corroded RC Building
指導教授: 邱建國
Chien-Kuo Chiu
口試委員: 歐昱辰
Yu-Chen Ou
陳瑞華
Rwey-Hua Cherng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 61
中文關鍵詞: 腐蝕粘結強度抗彎承載力抗剪承載力抗震分析
外文關鍵詞: Corrosion, Bond Strength, Moment Capacity, Shear Capacity, Seismic Analysis
相關次數: 點閱:341下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構的惡化,由於環境如今已備受關注。這次地震可能是主要的原因是惡化的結構,但環境將有助於損害的結構性能良好。碳化和氯化物的攻擊是最有名的症狀產生腐蝕的結構。由於腐蝕攻擊成員,鋼筋混凝土結構,能力結構肯定會減少。腐蝕水平方面的重量損失將是有趣的問題,我們找到了自己的能力,因為我們提供了一些基本方程從過去的研究。
    的性能的結構將出現在目前的形式和剪切能力的能力。在這篇論文中,我們將盡力找到這兩個值的腐蝕所致。延性特徵也將有助於在計算過程。另一個重要的事情是分析了粘結強度的主要酒吧和馬鐙受到腐蝕。在場的粘結強度將提供給我們有更深入的分析,通過故障的增援。此後,未加固的定義將分明。
    既然我們是能夠找到的能力結構隨著旋轉或位移,我們將繼續非線性鉸鏈分析每個腐蝕程度。通過這樣的Pushover分析,我們也將能夠找到性能點的結構。作為結論,我們將有視力的損害的結構所對應的腐蝕分析,從行動到推覆構造。這一成就的性能點是突破的信息,以確定結構抗震性能。


    The deterioration of the structure due to the environment has taken much concern nowadays. The earthquake may be the major cause of the deterioration to the structure, but the environment will contribute to the detriment of the structure performance as well. Carbonation and chloride attack are the most well known symptoms to produce the corrosion to the structure. As the corrosion attacked the member of the RC structures, the capacity of the structure will decrease for sure. The corrosion level in terms of the weight loss will be the interesting issue in finding its capacity as we are provided with some basic equations from the past research.
    The performance of the structure will be appeared in the form of the moment capacity and shear capacity. In this thesis, we will try to find those two values induced by the corrosion. The ductility feature will also contribute in the calculation process. Another important thing is analyzing the bond strength of the main bar and stirrup subjected to the corrosion. The presence of the bond strength will provide us to have deeper analysis through the failure of the reinforcement. Henceforth, the failure definition of the reinforcement will be sharply defined.
    Since we are able to find the capacity of the structure along with the rotation or displacement, we will continue the non-linear hinge analysis for each corrosion level. By doing the pushover analysis, we will also be able to find the performance point of the structure. As the conclusion, we will have the vision of the detriment of the structure corresponding to the corrosion analysis from the pushover action to the structure. The achievement of the performance point is the breakthrough information to identify the seismic performance of the structure.

    ABSTRACT ACKNOWLEDMENT TABLE OF CONTENT LIST OF FIGURE LIST OF TABLE CHAPTER I. INTRODUCTION 1.1 Background 1.2 Research Motivation and Objectives 1.3 Problem Definition and Limitation 1.4 Methodologies CHAPTER II. REFERENCE REVIEW CHAPTER III. THEORETICAL BACKGROUND 3.1 Corrosion Figuration 3.2 Mechanical Properties Induced by Corrosion 3.3 Flexure Capacity 3.3.1 Flexure Capacity of Beam 3.3.2 Flexure Capacity of Column 3.4 Shear Capacity of the Stirrup 3.4.1 Shear Capacity of the Stirrup for Beam 3.4.2 Shear Capacity of the Stirrup for Column 3.5 Failure Definition 3.6 Seismic Design Induced by Corrosion 3.6.1 ATC 40 Procedure 3.6.2 FEMA 356 Procedure CHAPTER IV. GENERAL INFORMATION AND STRUCTURAL DATA 4.1 General Information 4.2 Material Properties 4.3 Structural Data 4.4 Design Response Spectrum CHAPTER V. ANALYSIS, RESULT, AND DISCUSSION 5.1 Analysis of Beam 5.1.1 Calculation Procedure for Moment Capacity of the Beam 5.1.2 Calculation Procedure for Shear Capacity of Stirrup of the Beam 5.1.3 Results and Analysis 5.2 Analysis of Column 5.2.1 Calculation Procedure for Moment Capacity of the Column 5.2.2 Calculation Procedure for Shear Capacity of Stirrup of the Column 5.2.3 Results and Analysis 5.3 Seismic Analysis 5.3.1 Mode Shape and Period of the Structure 5.3.2 Non-linear Hinge Properties 5.3.3 Pushover Analysis CHAPTER VI. CONCLUSIONS REFERENCES

    Aoyama, H. (2001). Design of Modern High-rise Reinforced Concrete Structures. London : Imperial College Press
    Bentur, A., Diamond, S., Berke, N.S. (1997). Steel Corrosion in Concrete : Fundamentals and Civil Engineering Practice. London : E&FN Spon
    Bhargava, K., Ghosh, A.K., Mori, Y., Ramanujam, S. (2008). Suggested Empirical Models for Corrosion-Induced Bond Degradation in Reinforced Concrete. Journal of Structural Engineering ASCE
    Broomfield, J.P. (1997). Corrosion of Steel in Concrete : Understanding, Investigation, and Repair. New York : E&FN Spon
    Bureau of Indian Standards (BIS). (2000). Indian Standard Code of Practice for Plain and Reinforced Concrete. New Delhi, India
    Calvi, G.M. (1998). Performance-Based Approaches for Seismic Assessment of Existing Structures. Proceedings of the eleventh European conference on earthquake engineering, Paris
    Chang, R., Castel, A., Francois, R. (2009). Concrete Cover Cracking with Reinforcement Corrosion of RC Beam during Chloride-induced Corrosion Process. http://ees.elsevi e r.com/CEMCON/default.asp
    Chiu, C.K., Noguchi, T., Kanematsu, M. (2008). Optimal Maintenance Plan for RC Members by Minimizing Life-cycle Cost Including Deterioration Risk due to Carbonation. Journal of Advanced Concrete Technology Vol. 6 No. 3 p.469-480
    ETABS Introductory Tutorial ; ETABS User’s Guide
    FEMA 356; FEMA 450; and NEHRP 2003. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures.
    Kato, E., Iwanami, M., Yokota, H., Hamada, H. (2008). Corrosion Characterization of Reinforcing Bar in Existing RC Structures. Proceeding of the First IALCCE. London : Taylor & Francis Group
    Lee, H.S, Noguchi, T., Tomosawa, F. (1998). FEM Analysis for Structural Performance of Deteriorated RC Structures due to Rebar Corrosion. London : E&FN Spon
    Lu, W.Y., Chang, Y.M., Lin, I.J. (2009). The Probability of Bond Failure of Reinforced Concrete Cantilever Beams. Journal of Architecture
    Mansur, M.A., Tan, K.H. (1999). Concrete Beams with Openings : Analysis and Design. United States of America : CRC Press LLC
    Naiem, F. (2001). The Seismic Design Handbook. United States of America : Kluwer Academic Publishers
    Nielsen, M.P. (1999). Limit Analysis and Concrete Plasticity. United States of America : CRC Press LLC
    Park, R., Paulay, T. (1975). Reinforced Concrete Structures. Canada : John Wiley & Sons
    Pennelis, G.G., Kappos, A.J. (1997). Earthquake-resistant Concrete Structures. London : E-FN SPON
    Shiraishi, I., Takagi, H., Jirsa, J.O. (2001). A Study on Strut Angle of Truss Mechanism in Truss-arch Theory for R/C Members. AIJ No.548, J.Struct.Constr.Eng. [In Japanese]
    Sung, Y.C. (2010). Evaluation on Time-dependent Seismic Loss of Deteriorated Reinforced Concrete Bridges. Taipei : Proceedings of the Forum on Bridge Engineering
    Watanabe, F., Ichinose, T. (1992). Strength and Ductility Design of RC Members Subjected to Combined Bending and Shear. Concrete shear in earthquake, Elsevier Applied Science, Publisher Ltd, p. 429-438

    QR CODE