簡易檢索 / 詳目顯示

研究生: 林姿彣
Tzu-Wen LIN
論文名稱: 圓柱在振盪流作用下的垂直振動數值研究
Numerical study of transverse vibration of circular cylinder interacting with oscillatory flow
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 張倉榮
Tsang-Jung Chang
林怡均
Yi-Jiun LIN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: 直接施力沉浸邊界法振盪流鎖向放大渦漩引致振動振鈴現象
外文關鍵詞: direct-forcing immersed boundary method, oscillatory flow, lock-in, vortex-induced vibration, springing
相關次數: 點閱:275下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要應用一個具虛擬力的直接施力沉浸邊界法(Direct Forcing
    Immersed Boundary Method, DFIB) 來模擬計算一圓柱體在振盪流中
    所產生的渦漩引致振動(Vortex Induced Vibration, VIV) 現象。渦
    漩引致振動是一個非常實際的工程問題, 一直以來, 各國工程師們皆苦心
    設法防止因VIV 現象造成近海相關土木設備和結構物共振或疲勞的嚴重損
    害。由於圓柱周圍的渦漩逸放會導致原本作用於圓柱的水動力隨著時間而
    有所變化, 所以當水動力作用的頻率與物體自然頻率接近時, 鎖向放大現
    象就會發生, 同時也會導致物體具有劇烈的大振幅圓柱振動進而造成結構
    物的破壞。在此研究中也發現到一個比鎖向放大的損害更加嚴重的現象,
    稱為振鈴。由於此現象的橫向振動頻率會在短時間內突然上升, 導致結構
    物的損害相較於鎖向放大來的嚴重。此研究首先探討振盪流經單根固定圓
    柱, 經由比較實驗及數值預測水動力係數和速度分量在三個不同的截面積
    下來驗證本研究所建立之數值模擬的正確性, 接著此方法應用於模擬振盪
    流與單根圓柱在橫向方向的交互作用。探討入流速度的變化對渦流引致振
    動的效應並且找出對應的頻率鎖定區域。因此本數值模擬可用來預測發生
    鎖向放大的條件與現象。


    Numerical simulations of the vortex-induced vibration (VIV) for
    a circular cylinder in an oscillatory flow using direct-forcing immersed boundary (DFIB) method are undertaken. Vortex-induced vibration (VIV) of structures is a practical engineering problem.
    In last few decades, numbers of engineers have devoted themselves
    to prevention of the VIV phenomenon causing serious damages of offshore-related civil equipment and structures. The fluctuating hydrodynamic force induces vibration of structures due to the vortex
    shedding around it. Furthermore, this vibration phenomenon causes failure of structures due to lock-in phenomenon. A phenomenon called “springing” also found in this study which is more serious than lock-in, as it has sudden a very high transverse frequency response which can cause serious damage to the structure. A stationary cylinder in an oscillatory flow is considered in this study. The experimental and numerical results for dynamic and velocity components in three different cross-sectional areas have been compared to verify and validate with the available published results. This DFIB method is then applied to simulate a moving circular cylinder in a transverse direction in an oscillatory flow. The effect of the reduced velocity are discussed and the corresponding lock-in region is found. This established model can be useful for prediction of VIV of structures.

    1 INTRODUCTION 14 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 21 2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 The equation of cylinder motion . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Direct forcing immersed boundary method . . . . . . . . . . . . . . . . . . 24 2.3.1 Calculation of virtual force . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.2 Numerical methods for solving Navier-Stokes equations . . . . . . . 26 2.4 Oscillatory flow boundary condition . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Verification of DFIB model . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5.1 Computational domain and computing time . . . . . . . . . . . . . 29 2.5.2 Grid independence and validation of in-house numerical code . . . . 29 3 RESULTS AND DISCUSSION 32 3.1 Vibration and vortex pattern . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2 Lock-in phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Springing phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 System characteristic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 37 4 CONCLUSIONS AND FUTURE WORK 38 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Appendix A Vortex shedding mode 59 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

    Chern, M.J., Hsu, W.C. and Horng, T.L., 2013. Numerical study for interaction of oscillatory flow with cylinder array using immersed boundary method. Journal of Fluids and Structures 43, 325-346.
    Chern, M.J., Kuan, Y.H., Nugroho, G., Lu, G.T. and Horng, T.L., 2014. Direct-forcing immersed boundary modeling of vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 134, 109-121.
    Chern, M.J., Noor, D.Z., Liao, C.B. and Horng, T.L., 2015. Direct-Forcing Immersed Boundary Method for Mixed Heat Transfer. Communications in Computational Physics 18, 1072-1094.
    Chern, M. J., Odhiambo, E. A., Horng, T. L., and Borthwick, A. G. L., 2016. Numerical simulation of vibration of horizontal cylinder induced by progressive waves. Fluid Dynamics Research 48, Article ID 015508.
    Chorin, A.J., 1967. The numerical solution of the Navier-Stokes equations for an incompressible fluid. Bulletin of the American Mathematical Society 73, 928-931.
    D¨utsch, H., Durst, F., Becker, S. and Lienhart, H., 1998. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. Journal of Fluid Mechanics 360, 249-271.
    Fu, S., Wang, J., Baarholm, R., Wu, J., and Larsen, C. M., 2014. Features of vortex-induced vibration in oscillatory flow. Mechanics and Arctic Engineerin 136, Article ID 011801.
    Gurley, K. R. and Kareem, A., 1998. Simulation of ringing in offshore systems under viscous loads. Journal of engineering mechanics 124, 582-586.
    Hirt, C., Nickols, B. and Romero, N., 1975. A numerical solution algorithm for transient fluid. LA-5852. Los Alamos Scientific Laboratory, Los Alamos, New Mexico, USA.
    Kozakiewicz, A., Sumer, B. M. and Fredsøe, J., 1992. Spanwise correlation on a wall in oscillatory flows. Journal of Fluids and Structures 6, 371-392.
    Kozakiewicz, A., Sumer, B. M., Fredsoe, J., and Hansen, E. A., 1996. Vortex regimes around a freely vibrating cylinder in oscillatory flow. International Journal of Offshore and Polar Engineering 7, 94-103.
    Leonard, B.P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19, 59-98.
    Leontini, J.S., Thompson, M.C. and Hourigan, K., 2006. The beginning of branching behaviour of vortex-induced vibration during two-dimensional flow. Journal of Fluids and Structures 22, 857-864.
    Mohd. Yusof, J., 1996. Interaction of massive particles with turbulence. Ph.D. thesis, Cornell University, USA.
    Sumer, B. M. and Fredsøe, J., 1988. Transverse vibrations of an elastically mounted cylinder exposed to an oscillating flow. Journal of Offshore Mechanics and Arctic Engineering 110, 387-394.
    Shen, L.W., Chan, E.S. and Lin, P.Z., 2009. Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method. Computers and Fluids 38, 691-702.
    Sotiropoulos, F. and Yang, X., 2014. Immersed boundary methods for simulating fluid-structure interaction. Journal of Computational Physics 65, 1-21.
    Thorsen, M. J., Svik, S., and Larsen, C. M., 2016. Time domain simulation of vortex-induced vibrations in stationary and oscillating flows. Journal of Fluids and Structures 61, 1-19.
    Williamson, C.H.K., 1985. Sinusoidal flow relative to circular cylinder. Journal of Fluid Mechanics 155, 141-174.
    Williamson, C.H.K. and Roshko, A., 1988. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures 2, 355-381.
    Yang, B., Gao, F., Jen, D-T. and Wu, Y., 2009. Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady flow. Acta Mechanica Sinica 25(1), 51-63.
    Zhao, M., Cheng, L., and An, H., 2012. Numerical investigation of vortex-induced vibration of a circular cylinder in transverse direction in oscillatory flow. Ocean Engineering 41, 39-52.
    Zhao, M., Kaja, K., Xiang, Y., and Yan, G., 2013. Vortex-induced vibration (VIV) of a circular cylinder in combined steady and oscillatory flow. Ocean Engineering 73, 83-95.
    Zhao, M., Pearcey, T., Cheng, L., and Xiang, Y., 2017. Three-Dimensional Numerical Simulations of Vortex-Induced Vibrations of a Circular Cylinder in Oscillatory Flow. Journal of Waterway, Port, Coastal, and Ocean Engineering, 04017007-(1-16).

    QR CODE