簡易檢索 / 詳目顯示

研究生: 陳冠穎
Guan-Ying Chen
論文名稱: 黑色二氧化鈦奈米柱等向陣列之於室溫氫氣傳感器之應用與開發
Preparation and properties of black titanium dioxide nanorod arrays for hydrogen gas sensing
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 朱瑾
Jinn P. Chu
吳志明
Jyh-Ming Wu
蕭育生
Yu-Sheng Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 125
中文關鍵詞: 室溫氣體感測器氫氣感測器黑色二氧化鈦奈米柱陣列水熱法高靈敏度
外文關鍵詞: Room temperature, Hydrogen gas sensor, Black TiO2, Nanoforest, Facile and simple synthesis, Highly sensitive
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化石燃料的使用導致了日益嚴重的全球溫室效應,危害性氣體副產物的劇增也造就了許多新興疾病與傷害,同時因消耗速度遠超行成所需時間所帶來的能源危機隱患不允許我們滿足於現況,前述種種使的新的綠色能源與配套能源應用技術的開發迫在眉睫。氫氣因無汙染性、易獲取性、豐富性、高燃燒熱、可持續性與可再生成為了優異的綠色能源並已廣泛應用,也因此氫氣感測器之研究也成為熱門研究主題。
二氧化鈦因獨特的電學、光學、催化和氣敏特性,具有無毒、低成本和惡劣環境下高穩定性等優點成為較有潛力的氫氣感測材料候選者,而透過還原退火製程對其進行能帶隙調節,將之轉變成能帶隙較小且具備更優異載流子特性、電性能和光學性能之黑色二氧化鈦為提升其氣體感測性能有效且熱門的方針,不僅如此,本研究亦結合陣列化製程技術,透過提升感氣層之比表面積近一步提升所開發之元件的響應性能,並且透過一氧化碳大氣還原退火技術有效規避了當前黑色二氧化鈦最主流之製備方法氫化法所面臨的設備侷限以及實驗安全性隱患。
本研究成功透過一氧化碳大氣還原退火技術製備了具優秀載流子特性、電性能和光學性能之黑色二氧化鈦,並達到提升室溫二氧化鈦氫氣感測器響應能力之實驗目的,由旋塗法製備得到之薄膜狀感氣層黑色二氧化鈦感測器(Sp-750℃)相比由相同製程得之白色二氧化鈦感測器(Sp-W-TiO2)有著顯著的性能提升,由2%提升至304%,並具備優異的靈敏度、應答時間、恢復時間、選擇性和穩定性;隨後本團隊近一步透過陣列化技術對感氣材料之比表面積以及電性能進行優化,並成功提升元件之效能,由水熱法製備得到之黑色二氧化鈦陣列感測器(Hy-750℃)具備傑出的1050%響應值,相比相同製程得到之白色二氧化鈦陣列感測器(Hy-W-TiO2)僅具備25%之響應值,Hy-750℃亦具備優異的靈敏度、應答時間、恢復時間、選擇性和穩定性。


Nowadays, environmental pollution and energy crisis are the major problems challenging our world. Hydrogen (H2), is renewable and free of carbon emission, which can play crucial role in securing energy and reducing greenhouse effect. H2 having 120 MJ/Kg energy density that is three times that of diesel or gasoline is a promising next generation green energy source. The use of H2 as energy source can also overcome air pollution and depletion of fossil fuels issues. Nevertheless, H2 is flammable and highly explosive when its concentration greater than 4% that needs great attention in storing large amount of H2 gas. Therefore, quick detection of H2 leakage at ultralow concentration is very important. Hence, development of H2 gas sensor is mandatory.
Titanium dioxide (TiO2) is one kind of metal oxides semiconductor having wide bandgap that is being applied various areas such photocatalysis, solar cells, lithium-ion battery, gas sensors, and photodetectors due to its chemical stability, eco-friendliness, structural, optical and transportation properties. Various types of TiO2 based gas sensor have been developed and exhibited excellent gas sensing performance toward different gases. However, their practical applicability suffers from one or more of the following limitation: high working temperature, low selectivity, slow response, stability and reproducibility. Therefore, looking for strategy that overcome the abovementioned limitations is necessary.
Recently, black TiO2 has got huge consideration in different fields such as CO2 reduction, water evaporation, organic pollutant treatment and water splitting due to its high oxygen vacancy. However, there is no study reported on gas sensing property of black TiO2 to date. Therefore, development of black TiO2 based gas sensor that having excellent sensing performance is important.
Hence, in this work, black TiO2 nanoforest based H2 gas sensor was synthesized by simple and facile spin coating method for the first time. The synthesized sample was systematically characterized. The H2 gas sensing property of the developed black TiO2 nanoforest based sensor was investigated at room temperature. Its practical applications were evaluated in terms of selectivity, cyclic and long-term stability. The findings showed that the developed sensor possesses outstanding hydrogen sensing property (304%). Besides, it exhibited excellent selectivity, cyclic and long-term stability that are crucial for real applications sensor. Moreover, the developed sensor presented almost the same sensor response in wide range of relative humidity confirming its promising candidacy to be used real application of H2 gas detection and monitoring in environmental remediation.
Nevertheless, we are not satisfied with its sensitivity. Thus, we proposed a strategy to overcome this issue. Different researchers have found out that controlling morphology directionally growing them can improve their properties for various applications. Accordingly, black TiO2 nanoforest was synthesized by simple and facile hydrothermal method for the first time. Its H2 gas sensing property was investigated at room temperature. The applicability of the sensor in real life was also studied. The results revealed that the fabricated black TiO2 nanoforest based sensor exhibits outstanding H2 gas sensing performance of 1050% sensor response toward 500 ppm H2 gas. Besides, it also presented excellent selectivity, cyclic and long term stability that are very crucial for real applications. Moreover, the developed sensor showed similar H2 gas sensing performance in wide range of environmental conditions that confirms its candidacy practical application of H2 gas monitoring. Therefore, this study paves way in development of black TiO2 nanoforest based sensors by easy, cost-efficient and facile method that could play significant role various areas of environmental remediation.

摘要 III Abstract V 誌謝 VIII 目錄 IX 圖目錄 XIII 表目錄 XVIII 第1章 前言 1 1.1 氣體危害性 1 1.2 氫氣之應用 3 1.2.1. 製氫技術 4 1.2.2. 氫氣發電 5 1.2.3. 氫氣之於生活 5 1.3 氣體感測器概述 7 1.3.1. 氣體感測器之應用範疇 7 1.3.2. 各類氣體感測器 7 1.3.3. 氣體感測器之評斷標準 9 1.4 氣體感測器響應原理 12 1.5 氣體感測器優化方針 14 1.6 研究背景 18 第2章 文獻回顧與原理 20 2.1 二氧化鈦氫氣感測器 20 2.2 黑色二氧化鈦概論 22 2.2.1. 黑色二氧化鈦製備技術 22 2.2.2. 黑色二氧化鈦生成機制 25 2.2.3. 黑色二氧化鈦材料特性 26 2.2.4. 黑色二氧化鈦能帶隙下降機制 29 2.3 陣列化製程技術 31 2.4 水熱法製成技術概論 32 2.5 CO大氣還原退火技術 35 2.6 研究動機與目的 36 第3章 實驗與方法 37 3.1 實驗藥品 37 3.2 實驗設備與儀器 38 3.3 實驗流程 40 3.4 樣品製備 41 3.4.1. 旋轉塗佈法感測器 41 3.4.2. 水熱法感測器製備 43 3.5 分析方法 46 3.5.1. 場發射掃描式電子顯微鏡 (FE-SEM) 46 3.5.2. 波長色散X射線光譜 (WDS) 46 3.5.3. X射線繞射儀 (XRD) 47 3.5.4. 紫外光-可見光分析儀 (UV-Vis) 47 3.5.5. X射線光電子能譜儀 (XPS) 48 3.5.6. 霍爾效應 (Hall Effect) 48 3.5.7. 氣體感測效能測試(Gas Sensing Properties) 49 第4章 結果與討論 50 4.1 旋轉塗佈法感測器 50 4.1.1. 樣品鑑定與分析 50 4.1.1.1. 表面形貌分析 50 4.1.1.2. 結晶面與型態分析 51 4.1.1.3. 光學性質及能帶隙分析 52 4.1.1.4. 元素組成分析 54 4.1.1.5. 元素鍵結分析 54 4.1.1.6. 霍爾效應分析 58 4.1.2. 氣體感測效能分析 59 4.1.2.1. 感氣材料選擇 59 4.1.2.2. 電壓-電流分析 61 4.1.2.3. 氣體濃度-訊號分析 62 4.1.2.4. 工作溫度分析 64 4.1.2.5. 應答時間與恢復時間分析 65 4.1.2.6. 循環測試 67 4.1.2.7. 濕度測試 68 4.1.2.8. 選擇性測試 69 4.1.2.9. 穩定性測試 70 4.2 水熱法感測器 72 4.2.1. 樣品鑑定與分析 72 4.2.1.1. 表面形貌分析 72 4.2.1.2. 結晶面與型態分析 75 4.2.1.3. 光學性質與能帶隙分析 76 4.2.1.4. 元素組成分析 77 4.2.1.5. 元素鍵結分析 78 4.2.1.6. 霍爾效應分析 82 4.2.2. 氣體感測效能分析 83 4.2.2.1. 感氣材料選擇 83 4.2.2.2. 電壓-電流分析 85 4.2.2.3. 氣體濃度-訊號分析 86 4.2.2.4. 工作溫度分析 87 4.2.2.5. 應答時間與恢復時間分析 89 4.2.2.6. 循環測試 90 4.2.2.7. 濕度測試 91 4.2.2.8. 選擇性測試 91 4.2.2.9. 穩定性測試 92 4.3 響應機制 94 4.4 響應性能比較 95 第5章 結論 96 第6章 參考文獻 97

(1) Pilavachi, P. A.; Stephanidis, S. D.; Pappas, V. A.; Afgan, N. H. Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologies. Applied Thermal Engineering 2009, 29 (11-12), 2228-2234.
(2) Mirzaei, A.; Lee, J.-H.; Majhi, S. M.; Weber, M.; Bechelany, M.; Kim, H. W.; Kim, S. S. Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics 2019, 126 (24), 241102.
(3) Mirzaei, A.; Yousefi, H. R.; Falsafi, F.; Bonyani, M.; Lee, J.-H.; Kim, J.-H.; Kim, H. W.; Kim, S. S. An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas. International Journal of Hydrogen Energy 2019, 44 (36), 20552-20571.
(4) Dresselhaus, M. S.; Thomas, I. Alternative energy technologies. Nature 2001, 414 (6861), 332-337.
(5) Sunte, J. Importance of noble gases and metals in welding and coating as in manufacturing processes. Rn 2023, 6, 10.
(6) Tibbles, P. M.; Edelsberg, J. S. Hyperbaric-oxygen therapy. New England Journal of Medicine 1996, 334 (25), 1642-1648.
(7) Farrow, A.; Miller, K. A.; Myllyvirta, L. Toxic air: the price of fossil fuels. 2020.
(8) Lee, S. W.; Lee, W.; Hong, Y.; Lee, G.; Yoon, D. S. Recent advances in carbon material-based NO2 gas sensors. Sensors and Actuators B: Chemical 2018, 255, 1788-1804.
(9) Hjiri, M.; El Mir, L.; Leonardi, S.; Pistone, A.; Mavilia, L.; Neri, G. Al-doped ZnO for highly sensitive CO gas sensors. Sensors and Actuators B: Chemical 2014, 196, 413-420.
(10) Kawamura, K.; Vestergaard, M. d.; Ishiyama, M.; Nagatani, N.; Hashiba, T.; Tamiya, E. Development of a novel hand-held toluene gas sensor: Possible use in the prevention and control of sick building syndrome. Measurement 2006, 39 (6), 490-496.
(11) Ahmad, R.; Majhi, S. M.; Zhang, X.; Swager, T. M.; Salama, K. N. Recent progress and perspectives of gas sensors based on vertically oriented ZnO nanomaterials. Advances in colloid and interface science 2019, 270, 1-27.
(12) Wang, Z.; Li, Z.; Jiang, T.; Xu, X.; Wang, C. Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature. ACS applied materials & interfaces 2013, 5 (6), 2013-2021.
(13) Satyapal, S. US Department of Energy Hydrogen Program: 2021 Annual Merit Review and Peer Evaluation Report; June 7-11, 2021; National Renewable Energy Lab.(NREL), Golden, CO (United States), 2022.
(14) LeValley, T. L.; Richard, A. R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies–A review. International Journal of Hydrogen Energy 2014, 39 (30), 16983-17000.
(15) Midilli, A.; Kucuk, H.; Topal, M. E.; Akbulut, U.; Dincer, I. A comprehensive review on hydrogen production from coal gasification: Challenges and Opportunities. International Journal of Hydrogen Energy 2021, 46 (50), 25385-25412.
(16) Yue, M.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 2021, 146, 111180.
(17) Mekhilef, S.; Saidur, R.; Safari, A. Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews 2012, 16 (1), 981-989.
(18) Onishi, N.; Himeda, Y. Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coordination Chemistry Reviews 2022, 472, 214767.
(19) Konkol, M.; Wróbel, W.; Bicki, R.; Gołębiowski, A. The influence of the hydrogen pressure on kinetics of the canola oil hydrogenation on industrial nickel catalyst. Catalysts 2016, 6 (4), 55.
(20) Reese, M.; Marquart, C.; Malmali, M.; Wagner, K.; Buchanan, E.; McCormick, A.; Cussler, E. L. Performance of a small-scale Haber process. Industrial & Engineering Chemistry Research 2016, 55 (13), 3742-3750.
(21) Spreitzer, D.; Schenk, J. Reduction of iron oxides with hydrogen—a review. steel research international 2019, 90 (10), 1900108.
(22) Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sensors and Actuators B: Chemical 2019, 283, 590-601.
(23) Buttner, W. J.; Post, M. B.; Burgess, R.; Rivkin, C. An overview of hydrogen safety sensors and requirements. International Journal of Hydrogen Energy 2011, 36 (3), 2462-2470.
(24) Korotcenkov, G.; Han, S. D.; Stetter, J. R. Review of electrochemical hydrogen sensors. Chemical reviews 2009, 109 (3), 1402-1433.
(25) Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors–a review. Sensors and Actuators B: Chemical 2011, 157 (2), 329-352.
(26) Xun, H.; Zhang, Z.; Yu, A.; Yi, J. Remarkably enhanced hydrogen sensing of highly-ordered SnO2-decorated TiO2 nanotubes. Sensors and Actuators B: Chemical 2018, 273, 983-990.
(27) Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical 2014, 192, 607-627.
(28) Basu, A. K.; Chauhan, P. S.; Awasthi, M.; Bhattacharya, S. α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Applied Surface Science 2019, 465, 56-66.
(29) Morrison, S. R. Selectivity in semiconductor gas sensors. Sensors and actuators 1987, 12 (4), 425-440.
(30) Li, Z.; Yao, Z.; Haidry, A. A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy 2018, 43 (45), 21114-21132.
(31) Li, T.; Yin, W.; Gao, S.; Sun, Y.; Xu, P.; Wu, S.; Kong, H.; Yang, G.; Wei, G. The combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: a review. Nanomaterials 2022, 12 (6), 982.
(32) Walker, J. M.; Akbar, S. A.; Morris, P. A. Synergistic effects in gas sensing semiconducting oxide nano-heterostructures: A review. Sensors and Actuators B: Chemical 2019, 286, 624-640.
(33) Hu, A.; Wang, J.; Qu, S.; Zhong, Z.; Wang, S.; Liang, G. Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2017, 28, 3415-3422.
(34) An, S.; Park, S.; Ko, H.; Jin, C.; Lee, W. I.; Lee, C. Enhanced gas sensing properties of branched ZnO nanowires. Thin Solid Films 2013, 547, 241-245.
(35) Zhu, L.; Zeng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sensors and Actuators A: Physical 2017, 267, 242-261.
(36) Kwon, H.; Lee, Y.; Hwang, S.; Kim, J. K. Highly-sensitive H2 sensor operating at room temperature using Pt/TiO2 nanoscale Schottky contacts. Sensors and Actuators B: Chemical 2017, 241, 985-992.
(37) Jia, J.; Yamamoto, H.; Okajima, T.; Shigesato, Y. On the crystal structural control of sputtered TiO2 thin films. Nanoscale research letters 2016, 11, 1-9.
(38) Yi, C.; Liao, Q.; Deng, W.; Huang, Y.; Mao, J.; Zhang, B.; Wu, G. The preparation of amorphous TiO2 doped with cationic S and its application to the degradation of DCFs under visible light irradiation. Science of the Total Environment 2019, 684, 527-536.
(39) Ullattil, S. G.; Narendranath, S. B.; Pillai, S. C.; Periyat, P. Black TiO2 nanomaterials: a review of recent advances. Chemical Engineering Journal 2018, 343, 708-736.
(40) Yang, W.; Shen, H.; Min, H.; Ge, J. Enhanced acetone sensing performance in black TiO 2 by Ag modification. Journal of Materials Science 2020, 55, 10399-10411.
(41) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331 (6018), 746-750.
(42) Leshuk, T.; Parviz, R.; Everett, P.; Krishnakumar, H.; Varin, R. A.; Gu, F. Photocatalytic activity of hydrogenated TiO2. ACS applied materials & interfaces 2013, 5 (6), 1892-1895.
(43) Leshuk, T.; Linley, S.; Gu, F. Hydrogenation processing of TiO2 nanoparticles. The Canadian Journal of Chemical Engineering 2013, 91 (5), 799-807.
(44) Sinhamahapatra, A.; Jeon, J.-P.; Yu, J.-S. A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science 2015, 8 (12), 3539-3544.
(45) Zhu, Y.; Liu, D.; Meng, M. H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chemical Communications 2014, 50 (45), 6049-6051.
(46) Zhang, Z.; Hedhili, M. N.; Zhu, H.; Wang, P. Electrochemical reduction induced self-doping of Ti 3+ for efficient water splitting performance on TiO2 based photoelectrodes. Physical Chemistry Chemical Physics 2013, 15 (37), 15637-15644.
(47) Tan, H.; Zhao, Z.; Niu, M.; Mao, C.; Cao, D.; Cheng, D.; Feng, P.; Sun, Z. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. Nanoscale 2014, 6 (17), 10216-10223.
(48) Lü, X.; Chen, A.; Luo, Y.; Lu, P.; Dai, Y.; Enriquez, E.; Dowden, P.; Xu, H.; Kotula, P. G.; Azad, A. K. Conducting interface in oxide homojunction: understanding of superior properties in black TiO2. Nano Letters 2016, 16 (9), 5751-5755.
(49) Sun, C.; Jia, Y.; Yang, X.-H.; Yang, H.-G.; Yao, X.; Lu, G. Q.; Selloni, A.; Smith, S. C. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. The Journal of Physical Chemistry C 2011, 115 (51), 25590-25594.
(50) Cai, J.; Wang, Y.; Zhu, Y.; Wu, M.; Zhang, H.; Li, X.; Jiang, Z.; Meng, M. In situ formation of disorder-engineered TiO2 (B)-anatase heterophase junction for enhanced photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces 2015, 7 (45), 24987-24992.
(51) Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano letters 2011, 11 (7), 3026-3033.
(52) Rajaraman, T.; Parikh, S. P.; Gandhi, V. G. Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal 2020, 389, 123918.
(53) Xia, T.; Zhang, W.; Li, W.; Oyler, N. A.; Liu, G.; Chen, X. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2 (5), 826-835.
(54) Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A 2013, 1 (46), 14507-14513.
(55) Li, H.; Sun, B.; Yang, F.; Wang, Z.; Xu, Y.; Tian, G.; Pan, K.; Jiang, B.; Zhou, W. Homojunction and defect synergy-mediated electron–hole separation for solar-driven mesoporous rutile/anatase TiO2 microsphere photocatalysts. RSC advances 2019, 9 (14), 7870-7877.
(56) Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy & Environmental Science 2013, 6 (10), 3007-3014.
(57) Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. journal of materials chemistry A 2013, 1 (18), 5766-5774.
(58) Ullattil, S. G.; Periyat, P. Green microwave switching from oxygen rich yellow anatase to oxygen vacancy rich black anatase TiO2 solar photocatalyst using Mn (II) as ‘anatase phase purifier’. Nanoscale 2015, 7 (45), 19184-19192.
(59) Lin, S.; Li, D.; Wu, J.; Li, X.; Akbar, S. A selective room temperature formaldehyde gas sensor using TiO2 nanotube arrays. Sensors and Actuators B: Chemical 2011, 156 (2), 505-509.
(60) Lee, J.; Hong, S.-H.; Jho, J. Y. A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sensors and Actuators B: Chemical 2011, 160 (1), 1494-1498.
(61) Nguyen, M. H.; Kim, K.-S. Analysis on growth mechanism of TiO2 nanorod structures on FTO glass in hydrothermal process. Journal of Industrial and Engineering Chemistry 2021, 104, 445-457.
(62) Prathan, A.; Sanglao, J.; Wang, T.; Bhoomanee, C.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D. Controlled structure and growth mechanism behind hydrothermal growth of TiO2 nanorods. Scientific Reports 2020, 10 (1), 8065.
(63) Gopal, M.; Moberly Chan, W. J.; De Jonghe, L. C. Room temperature synthesis of crystalline metal oxides. Journal of Materials Science 1997, 32, 6001-6008.
(64) Wu, C.-M.; Motora, K. G.; Chen, G.-Y.; Kuo, D.-H.; Gultom, N. S. Highly efficient reduced tungsten oxide-based hydrogen gas sensor at room temperature. Materials Science and Engineering: B 2023, 289, 116285.
(65) Bae, E.; Murakami, N.; Ohno, T. Exposed crystal surface-controlled TiO2 nanorods having rutile phase from TiCl3 under hydrothermal conditions. Journal of Molecular Catalysis A: Chemical 2009, 300 (1-2), 72-79.
(66) Chen, J.; Yang, H. B.; Miao, J.; Wang, H.-Y.; Liu, B. Thermodynamically driven one-dimensional evolution of anatase TiO2 nanorods: one-step hydrothermal synthesis for emerging intrinsic superiority of dimensionality. Journal of the American Chemical Society 2014, 136 (43), 15310-15318.
(67) Gupta, T.; Cho, J.; Prakash, J. Hydrothermal synthesis of TiO2 nanorods: formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities. Materials Today Chemistry 2021, 20, 100428.
(68) Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society 2009, 131 (11), 3985-3990.
(69) Cao, S.; Sui, N.; Zhang, P.; Zhou, T.; Tu, J.; Zhang, T. TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. Journal of Colloid and Interface Science 2022, 607, 357-366.
(70) Tshabalala, Z. P.; Shingange, K.; Dhonge, B.; Ntwaeaborwa, O.; Mhlongo, G. H.; Motaung, D. E. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2 nanorods: Detailed study on the annealing temperature. Sensors and Actuators B: Chemical 2017, 238, 402-419.
(71) Lu, C.; Chen, Z. High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sensors and Actuators B: Chemical 2009, 140 (1), 109-115.
(72) Chen, S.; Wang, Y.; Li, J.; Hu, Z.; Zhao, H.; Xie, W.; Wei, Z. Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Materials Research Bulletin 2018, 98, 280-287.
(73) Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews 2015, 44 (7), 1861-1885.
(74) Chatzitakis, A.; Sartori, S. Recent advances in the use of black TiO2 for production of hydrogen and other solar fuels. ChemPhysChem 2019, 20 (10), 1272-1281.
(75) Liu, X.; Zhu, G.; Wang, X.; Yuan, X.; Lin, T.; Huang, F. Progress in black titania: a new material for advanced photocatalysis. Advanced Energy Materials 2016, 6 (17), 1600452.
(76) Liu, Y.; Tian, L.; Tan, X.; Li, X.; Chen, X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Science Bulletin 2017, 62 (6), 431-441.
(77) Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society 2012, 134 (18), 7600-7603.
(78) Zhang, H.; Tao, T.; Li, X.; Bao, Y.; Xia, X.; Lourenco, M.; Homewood, K.; Huang, Z.; Gao, Y. Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering. International Journal of Hydrogen Energy 2020, 45 (35), 18057-18065.
(79) Gong, Y.; Tu, R.; Goto, T. High-speed deposition of titanium carbide coatings by laser-assisted metal–organic CVD. Materials Research Bulletin 2013, 48 (8), 2766-2770.
(80) Yu, L.; Lin, Y.; Huang, J.; Lin, S.; Li, D. A visible light photocatalyst of carbonate‐like species doped TiO2. Journal of the American Ceramic Society 2017, 100 (1), 333-342.
(81) Tian, M.; Mahjouri-Samani, M.; Eres, G.; Sachan, R.; Yoon, M.; Chisholm, M. F.; Wang, K.; Puretzky, A. A.; Rouleau, C. M.; Geohegan, D. B. Structure and formation mechanism of black TiO2 nanoparticles. ACS nano 2015, 9 (10), 10482-10488.
(82) Alhebshi, N. A.; Salah, N.; Hussain, H.; Salah, Y. N.; Yin, J. Structural and Electrochemical Properties of Physically and Chemically Activated Carbon Nanoparticles for Supercapacitors. Nanomaterials 2021, 12 (1), 122.
(83) Delekar, S. D.; Dhodamani, A. G.; More, K. V.; Dongale, T. D.; Kamat, R. K.; Acquah, S. F.; Dalal, N. S.; Panda, D. K. Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru (II) sensitizers. ACS omega 2018, 3 (3), 2743-2756.
(84) Chen, K.-T.; Hsu, C.-H.; Jiang, S.-C.; Liang, L.-S.; Gao, P.; Qiu, Y.; Wu, W.-Y.; Zhang, S.; Zhu, W.-Z.; Lien, S.-Y. Effect of annealing temperature on tantalum-doped TiO2 as electron transport layer in Perovskite solar cells. IEEE Transactions on Electron Devices 2022, 69 (3), 1149-1154.
(85) Cho, H. J.; Onozato, T.; Wei, M.; Sanchela, A.; Ohta, H. Effects of vacuum annealing on the electron mobility of epitaxial La-doped BaSnO3 films. APL materials 2019, 7 (2), 022507.
(86) Sun, M.; Song, P.; Li, J.; Cui, X. Preparation, characterization and applications of novel carbon and nitrogen codoped TiO2 nanoparticles from annealing TiN under CO atmosphere. Materials Research Bulletin 2013, 48 (10), 4271-4276.
(87) Wu, C.-M.; Motora, K. G.; Chen, G.-Y.; Kuo, D.-H.; Gultom, N. S. Highly efficient MoS2/CsxWO3 nanocomposite hydrogen gas sensors. Frontiers in Materials 2022, 9, 18.
(88) Esfandiar, A.; Irajizad, A.; Akhavan, O.; Ghasemi, S.; Gholami, M. R. Pd–WO3/reduced graphene oxide hierarchical nanostructures as efficient hydrogen gas sensors. International journal of hydrogen energy 2014, 39 (15), 8169-8179.
(89) Liu, Y.; Hao, L.; Gao, W.; Wu, Z.; Lin, Y.; Li, G.; Guo, W.; Yu, L.; Zeng, H.; Zhu, J. Hydrogen gas sensing properties of MoS2/Si heterojunction. Sensors and Actuators B: Chemical 2015, 211, 537-543.
(90) K.G. Motora, V. G. D., C.-M. Wu, R. Ashwini, G.-Y. Chen, M.S. Santosh, S. Kumar, D.-H. Kuo, . Highly efficient and stable NiSe2-rGO composite-based room temperature hydrogen gas sensor. International Journal of Hydrogen Energy 2023b, xx.
(91) Lupan, O.; Chai, G.; Chow, L. Novel hydrogen gas sensor based on single ZnO nanorod. Microelectronic engineering 2008, 85 (11), 2220-2225.
(92) Hassan, J.; Mahdi, M.; Chin, C.; Abu-Hassan, H.; Hassan, Z. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. Journal of Alloys and Compounds 2013, 546, 107-111.
(93) Wang, B.; Zhu, L.; Yang, Y.; Xu, N.; Yang, G. Fabrication of a SnO2 nanowire gas sensor and sensor performance for hydrogen. The Journal of Physical Chemistry C 2008, 112 (17), 6643-6647.
(94) Chen, X.; Liu, T.; Wu, R.; Yu, J.; Yin, X. Gas sensors based on Pd-decorated and Sb-doped SnO2 for hydrogen detection. Journal of Industrial and Engineering Chemistry 2022, 115, 491-499.
(95) Agarwal, S.; Kumar, S.; Agrawal, H.; Moinuddin, M. G.; Kumar, M.; Sharma, S. K.; Awasthi, K. An efficient hydrogen gas sensor based on hierarchical Ag/ZnO hollow microstructures. Sensors and Actuators B: Chemical 2021, 346, 130510.
(96) Haidry, A. A.; Puskelova, J.; Plecenik, T.; Durina, P.; Gregus, J.; Truchly, M.; Roch, T.; Zahoran, M.; Vargova, M.; Kus, P. Characterization and hydrogen gas sensing properties of TiO2 thin films prepared by sol–gel method. Applied surface science 2012, 259, 270-275.
(97) Xue, N.; Zhang, Q.; Zhang, S.; Zong, P.; Yang, F. Highly sensitive and selective hydrogen gas sensor using the mesoporous SnO2 modified layers. Sensors 2017, 17 (10), 2351.
(98) Huang, H.; Lee, Y.; Chow, C.; Tan, O.; Tse, M.; Guo, J.; White, T. Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors. Sensors and Actuators B: Chemical 2009, 138 (1), 201-206.
(99) Hwang, S.; Kwon, H.; Chhajed, S.; Byon, J. W.; Baik, J. M.; Im, J.; Oh, S. H.; Jang, H. W.; Yoon, S. J.; Kim, J. K. A near single crystalline TiO2 nanohelix array: enhanced gas sensing performance and its application as a monolithically integrated electronic nose. Analyst 2013, 138 (2), 443-450.
(100) Li, H.; Wu, C.-H.; Liu, Y.-C.; Yuan, S.-H.; Chiang, Z.-X.; Zhang, S.; Wu, R.-J. Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor. Sensors and Actuators B: Chemical 2021, 341, 130035.
(101) Wu, C.-H.; Zhu, Z.; Huang, S.-Y.; Wu, R.-J. Preparation of palladium-doped mesoporous WO3 for hydrogen gas sensors. Journal of Alloys and Compounds 2019, 776, 965-973.
(102) Ward, C. V.; Kimbel, W. H.; Johanson, D. C. Complete fourth metatarsal and arches in the foot of Australopithecus afarensis. Science 2011, 331 (6018), 750-753.
(103) Leshuk, T.; Parviz, R.; Everett, P.; Krishnakumar, H.; Varin, R. A.; Gu, F. Photocatalytic activity of hydrogenated TiO2. ACS applied materials & interfaces 2013, 5 (6), 1892-1895.
(104) Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331 (6018), 746-750.
(105) Samsudin, E. M.; Abd Hamid, S. B.; Juan, J. C.; Basirun, W. J.; Kandjani, A. E. Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Applied Surface Science 2015, 359, 883-896.
(106) Lu, Z.; Yip, C. T.; Wang, L.; Huang, H.; Zhou, L. Hydrogenated TiO2 nanotube arrays as high‐rate anodes for lithium‐ion microbatteries. ChemPlusChem 2012, 77 (11), 991-1000.
(107) Zhu, Y.; Liu, D.; Meng, M. H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications. Chemical Communications 2014, 50 (45), 6049-6051.

無法下載圖示 全文公開日期 2025/08/18 (校內網路)
全文公開日期 2033/08/18 (校外網路)
全文公開日期 2033/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE