簡易檢索 / 詳目顯示

研究生: 王慕恩
Mu-En Wang
論文名稱: 應用K近鄰演算法於串聯電弧故障檢測與FPGA晶片設計
Application of K-Nearest Neighbor Algorithm for Detection of Series Arc Fault and FPGA-Based Chip Design
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 莊永松
Yung-Sung Chuang
辜志承
Jyh-Cherng Gu
連國龍
Kuo-Lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 198
中文關鍵詞: 串聯電弧電弧檢測小波轉換倒傳遞類神經網路K近鄰演算法FPGA
外文關鍵詞: Series Arc, Arc Dectection, Wavelet Transform, Back Propagation Neural Network, K Nearest Neighbor Algorithm, FPGA
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據國外調查指出,電弧事故是導致電氣火災的原因之一,當線路發生電弧故障時,電弧產生的火花與高溫,若未及時排除,可能點燃周遭的易燃物,導致發生火災。為開發電弧故障之精準及快速檢測技術,本論文建立直流串聯電弧及交流串聯電弧實驗平台,分別對直流及交流線路電弧進行實驗。首先實驗數據用離散小波轉換與高頻能量累積值得到特徵向量,再使用倒傳遞類神經網路與K近鄰演算法訓練出兩種檢測法,最後將檢測法實現於FPGA開發版上。由測試結果顯示,本論文設計之檢測法,在線路正常運轉和發生串聯電弧時,均能判斷出正確結果,且準確度優於商用電弧故障偵測器(Arc-Fault Detector,AFD)與商用電弧斷路器(Arc-Fault Circuit Interrupter,AFCI)。而K近鄰演算法的優點有容易理解、容易實現和運算簡單,在硬體消耗上較倒傳遞類神經網路要少,若未來使用硬體實現,此法將可節省硬體資源。


According to foreign investigations, arc faults are one of the causes of electrical fires. When an arc fault occurs on electric wire, sparks and high temperatures may ignite surrounding flammable materials and cause fire if arcs are not eliminated in time. In order to develop accurate and fast detection technology, this thesis establishes a DC series arc and AC series arc experimental platform to conduct experiments on DC and AC loads feeders respectively. First of all, the experimental data is used to obtain the eigen vector by discrete wavelet transform and accumulation high frequency energy method. Thereafter, the back propagation neural network(BPNN) and K nearest neighbor(KNN) algorithm are used to train two detection methods. At last, these detection method are implemented on the Field Programmable Gate Array(FPGA).From the test results, it is showed that the detection method designed in this thesis can detect correctly when electric wires are under normal operation and series arc fault. And the accuracy of our method are better than the commercial arc fault detector(AFD) and the arc fault circuit interrupter(AFCI). The advantages of the K-nearest neighbor algorithm are easy to understand, easy to implement, simple to operate and has less hardware consumption than that of the back propagation neural networks. If the K-nearest neighbor algorithm is implemented in the future, it will save hardware resources.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 3 1.3 研究內容 5 1.4 章節敘述 6 第二章 串聯電弧故障特性與實驗設備 8 2.1 前言 8 2.2 電力系統介紹 8 2.2.1 低壓配電系統 9 2.2.2 太陽光電系統 10 2.2.3 直流微電網 12 2.2.4 電動車 14 2.3 電力系統電弧故障之類型與特性 15 2.3.1 電弧 15 2.3.2 交流電力系統電弧故障 15 2.3.3 交流串聯電弧之時頻特性 17 2.3.4 直流電力系統電弧故障 19 2.3.5 直流串聯電弧之時頻特性 20 2.4 交流電弧與直流電弧之相關標準 23 2.4.1 UL1699與NEC210.12 23 2.4.2 NEC 690.11與屋內配線裝置規則 24 2.4.3 UL1699B 25 2.5 商用直流電弧故障保護裝置 27 2.6 商用交流電弧故障保護裝置 31 2.7 人為電弧故障實驗設備與實驗方法 33 2.7.1 實驗設備 33 2.7.2 交流電弧實驗方法 39 2.7.3 直流電弧實驗方法 41 2.8 小結 45 第三章 訊號處裡與串聯電弧故障檢測方法 46 3.1 前言 46 3.2 傅立葉轉換 46 3.2.1 離散傅立葉轉換 46 3.2.2 快速傅立葉轉換 47 3.3 小波轉換 49 3.3.1 離散小波轉換 51 3.3.2 小波多層解析 52 3.4 高頻能量累積值 54 3.4.1 交流串聯電弧之多層解析 54 3.4.2 直流串聯電弧之多層解析 57 3.5 高頻能量累積值結合倒傳遞類神經網路檢測法 59 3.5.1 交流串聯電弧之倒傳遞類神經網路檢測法 62 3.5.2 直流串聯電弧之倒傳遞類神經網路檢測法 63 3.6 高頻能量累積值結合K近鄰演算法 65 3.6.1 K近鄰演算法原理 65 3.6.2 常見的距離度量 66 3.7 小結 69 第四章 使用FPGA進行電弧故障檢測 70 4.1 前言 70 4.2 FPGA硬體開發平台 70 4.3 FPGA設計流程 71 4.4 FPGA電弧故障檢測模組 74 4.4.1 倒傳遞類神經網路檢測法檢測模組 74 4.4.2 K近鄰演算法檢測模組 78 4.4.3 FPGA開發板檢測流程與檢測模組硬體消耗 79 4.5 小結 83 第五章 交流串聯電弧檢測結果 84 5.1 前言 84 5.2 各負載檢測結果 84 5.2.1 負載一:吹風機 84 5.2.2 負載二:17顆省電燈泡 90 5.2.3 負載三:吹風機與17顆省電燈泡 96 5.2.4 負載四:7顆省電燈泡與17顆省電燈泡 102 5.2.5 負載五:吹風機與電鍋 108 5.2.6 負載六:17顆省電燈泡與100μF電容 114 5.2.7 負載七:吹風機與100μF電容 120 5.2.8 負載八:混合負載 126 5.3 小結 132 第六章 直流串聯電弧檢測結果 133 6.1 前言 133 6.2 電阻負載 133 6.2.1 不同電源電壓大小與線路電流大小 133 6.2.2 不同導線長度 142 6.3 透過切換式逆變器接市電 147 6.3.1 不同電源電壓大小與線路電流大小 147 6.3.2 不同導線長度 151 6.4 透過線性式逆變器接交流電阻負載 156 6.4.1 不同線路電流大小 156 6.4.2 不同導線長度 160 6.5 小結 164 第七章 結論與未來研究方向 165 7.1 結論 165 7.2 未來研究方向 166 參考文獻 167

[1]內政部消防署,「108年1至12月全國火災次數起火原因及火災損失統計表」,https://www.nfa.gov.tw/cht/index.php。
[2]R. Campbell, “Home Electrical Fires,” National Fire Protection Association(NFPA), March, 2019.
[3]“UL 1699, STANDARD FOR SAFETY Arc-Fault Circuit-Interrupters”, Underwriters Laboratories Inc, May 3, 2017.
[4]曾元超,「防範住家電器火災的新技術」,台電月刊,第549期,第26-31頁,2008。
[5]“NEC Section 690.11 Arc Fault Cricuit Protection”, National Electrical Code, 2011.
[6]「用戶用電設備裝置規則第三百九十六條之三十」,中華民國經濟部,七月,民國107年。
[7]D. A. Dini, P. W. Brazis, and K.-H. Yen, “Development of Arc-Fault Circuit-Interrupter requirements for Photovoltaic Systems”, 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, pp. 1790-1794, June, 2011.
[8]A. Shekhar, L. Ramírez-Elizondo, S. Bandyopadhyay, L. Mackay, and P. Bauera, “Detection of Series Arcs using Load Side Voltage Drop for Protection of Low Voltage DC Systems,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6288-6297, November, 2018.
[9]Q. Xiong, X. Liu, X. Feng, A.L. Gottozzi, Y. Shi, L. Zhu, S. Ji, and R.E. Hebner, “Arc Fault Detection and Localization in Photovoltaic Systems Using Feature Distribution Maps of Parallel Capacitor Currents”, IEEE Journal of Photovoltaics, Vol. 8, no. 4, pp. 1090-1097, July, 2018.
[10]N. L. Georgijevic, M. V. Jankovic, S. Srdic, and Z. Radakovic, “The Detection of Series Arc Fault in Photovoltaic Systems Based on the Arc Current Entropy”, IEEE Transactions on Power Electronics,Vol. 31, no. 8, pp. 5917-5930, August, 2016.
[11]J. C. Kim, D. O. Neacşu, B. Lehman, and R. Ball, “Series AC Arc Fault Detection Using Only Voltage Waveforms”, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, pp. 2385-2389, March, 2019.
[12]M. Dargatz and M. Fornage, “Method and Apparatus for Detection and Control of Dc Arc Faults,” U.S. Patent, 15 May 2012.
[13]C. Hong, C. Xiaojuan, L. Fangyun and W. Cong, “Series Arc Fault Detection and Implementation Based on the Short-time Fourier Transform”, 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, March, 2010.
[14]Y. Cao, J. Li, M. Sumner, E. Christopher, and D. Thomas, “Arc fault generation and detection in DC systems”, 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Kowloon, China, December, 2013.
[15]J. A. Momoh and R. Button, “Design and Analysis of Aerospace DC Arcing Faults Using Fast Fourier Transformation and Artificial Neural Network,” 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491), Toronto, Ont., Canada, pp. 788-793, July, 2003.
[16]P. Duan, L. Xu, X. Ding, C. Ning, and C. Duan, “An Arc Fault Diagnostic Method for Low Voltage Lines Using the Difference of Wavelet Coefficients”, 2014 9th IEEE Conference on Industrial Electronics and Applications, Hangzhou, China, pp. 401-405, June, 2014. 
[17]A. F. Ilman and Dzulkiflih, “Low Voltage Series Arc Fault Detecting With Discrete Wavelet Transform”, 2018 International Conference on Applied Engineering (ICAE), Batam, Indonesia, October, 2018.
[18]Y. Guo, L. Wang, Z. Wu, and B. Jiang, “Wavelet Packet Analysis Applied in Detection of Low-voltage DC Arc fault,” 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China, pp. 4013-4016. May 2009.
[19]王俊凱,「直流電路串聯電弧故障檢測與FPGA晶片設計」,碩士學位論文,國立台灣科技大學,臺北,民國106年。
[20]P. Muller, S. Tenbohlen, R. Maier, and M. Anheuser, "Characteristics of series and parallel low current arc faults in the time and frequency domain," 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, USA, October, 2010.
[21]J. Johnson, S. Kuszmaul, W. Bower, and D. Schoenwald, “Using PV Module and Line Frequency Response Data to Create Robust Arc Fault Detectors,” 2011 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, September, 2011.
[22]J. Johnson, B. Pahl. C. Luebke, T. Pier, T. Miller, J. Strauch, S. Kuszmaul, and W. Bower, “Photovoltaic DC Arc Fault Detector testing at Sandia National Laboratories”, 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, pp. 3614-3619, June, 2011.
[23]X. Yao, L. Herrera, and J. Wang, “A Series DC Arc Fault Detection Method and Hardware Implementation,” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, pp. 2444-2449, March, 2013.
[24]X. Yao, L. Herrera, S. Ji, K. Zou, and J. Wang, “Characteristic Study and Time-Domain Discrete- Wavelet-Transform Based Hybrid Detection of Series DC Arc Faults,” IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3103-3115, June, 2014.
[25]M. Naidu, T. J. Schoepf, and S. Gopalakrishnan, “Arc Fault Detection Scheme for 42-V Automotive DC Networks Using Current Shunt,” IEEE Transactions on Power Electronics, vol. 21, no. 3, pp. 633-639, May, 2006.
[26]賴德欣,「設計一直流串聯電弧故障偵測器於太陽光電系統之保護」,碩士學位論文,國立台灣科技大學,臺北,民國106年。
[27]林鳳生,「靜電場中的動電性:電學的故事」,凡異出版社,民國88年。
[28]張大凱,「電的旅程」,天下遠見出版股份有限公司,民國90年。
[29]俞家平,「屋內配線」,國家出版社,民國84年。
[30]沈輝、曾祖勤,「太陽能光電技術」,五南圖書出版股份有限公司,民國99年。
[31]經濟部能源局,再生能源資訊網,https://www.re.org.tw/knowledge/more.aspx?cid=202&id=628。
[32]中興電工微電網整體解決方案,https://goo.gl/c5vZA7。
[33]張存德,「中興電工機械公司混合式微電網發展現況」,電力人:台灣旅沙電力協會會刊,第16期,第77-80頁,十一月,民國103年。
[34]“DC Power Production, Delivery and Utilization,” An EPRI White Paper, 2006.
[35]蘇俊銘,「直流電力系統線路串聯電弧故障檢測」,碩士學位論文,國立臺灣科技大學,臺北,民國105年。
[36]黃隆洲、王正健,「台灣及國際智慧電動車發展現況與挑戰」,能源報導,第5-10頁,八月,民國101年。
[37]S. Soylu, “Electric vehicles-modelling and simulations”, 2011.
[38]陳又琨,「應用小波轉換於直流電力系統之串聯電弧故障偵測」,碩士學位論文,國立臺灣科技大學,臺北,民國103年。
[39]陳金龍,「配電盤弧光閃絡保護與危險等級分析之研究」,碩士學位論文,國立臺灣科技大學,臺北,民國98年。
[40]“VAMP 120&121 Arc Flash Protection Units,” Schneider Electric, March, 2012.
[41]史明哲,「應用模糊理論與類神經網路於低壓線路電弧故障檢測」,碩士學位論文,國立臺灣科技大學,臺北,民國104年。
[42]G. S. Seo, H. Bae, B. H. Cho, and K.C. Lee, “Arc protection scheme for DC distribution systems with photovoltaic generation”, 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, November, 2012.
[43]王奕捷,「低壓線路串聯電弧故障時域及頻域分析與檢測」,碩士學位論文,國立臺灣科技大學,臺北,民國100年。
[44]F. M. Uriarte, A. L. Gattozzi, J. D. Herbst, H. B. Estes, T. J. Hotz, A. Kwasinski, and R. E. Hebner, “A DC Arc Model for Series Faults in Low Voltage Microgrids,” IEEE Transactions on Smart Grid, vol. 3, no. 4, pp. 2063-2070, December, 2012.
[45]National Electrical Code, 2014.
[46]「屋內線路裝置規則」,中華民國經濟部,十二月,民國102年。
[47]“UL 1699B, Outline of Investigation for photovoltaic(PV) dc arc-fault circuit protection, Issue Number 1,” Underwriters Laboratories Inc., April 14, 2011.
[48]J. Johnson, C. Oberhauser, M. Montoya, A. Fresquez, S. Gonzalez, and A. Patel, “Crosstalk nuisance trip testing of photovoltaic DC arc-fault detectors”, 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, pp. 1383-1387, June, 2012.
[49]“5SM Arc Fault Detection Unit for Photovoltaics”, Siemens, April, 2015.
[50]“Firefighter Switch with Arc Fault Detection PVSEC-AF”, E-T-A Engineering Technology, 2015.
[51]B. Novak, “Implementing Arc Detection in Solar Applications: Achieving Compliance with the New UL 1699B Standard,” Texas Instruments, August, 2012.
[52]K. J. Lippert and T. Domitrovich, "AFCIs—From a standards perspective," IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1478-1482, March-April, 2014.
[53]NEMA Launches AFCI Safety Web Site. Available: http://www.ecmweb.com/content/nema-launches-afci-safety-web-site.
[54]G. D. Gregory, K. Wong, and R. F. Dvorak, "More about arc-fault circuit interrupters", IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1006-1011, July-August, 2004.
[55]A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. 3rd edition, Prentice Hall, 2010.
[56]江國銘,「以FPGA為設計晶片之電壓閃爍計算」,碩士學位論文,國立臺灣科技大學,臺北,民國100年。
[57]林銀議,「信號與系統」,五南圖書出版股份有限公司,民國98年。
[58]劉鈺韋,「運用小波轉換與神經網路檢測屋內低壓線路串聯電弧故障」,博士學位論文,國立臺灣科技大學,臺北,民國104年。
[59]董長虹、高志、於嘯海,「小波分系工具箱原理與應用」,國防工業出版社,民國93年。
[60]I. Daubechies, “Ten Lectures on Wavelets,” SIAM, Philadelphia, 1992.
[61]K. Satood, “Introduction to Data Compression,” 2nd edition, Morgan Kaufmann, San Francisco, 2000.
[62]R. M. Rao and A. S. Bopardikar, “Wavelet Transfrom Introduction to Theory and Applications,” Addison-Wesley, California, 1998.
[63]W. G. Morsi and M. E. El-Hawary, “Reformulating Three-Phase Power Components Definitions Contained in the IEEE Standard 1459-2000 Using Discrete Wavelet Transform,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1917-1925, July, 2007.
[64]陳慶芳,「心音訊號之分割與特徵擷取」,碩士學位論文,義守大學,高雄,民國101年。
[65]王進德,「類神經網路與模糊控制理論入門與應用」,全華圖書股份有限公司,2011。
[66]P. B. Thote, M. B. Daigavane, P. M. Daigavane, and S. P. Gawande, “An Intelligent Hybrid Approach Using KNN-GA to Enhance the Performance of Digital Protection Transformer Scheme”, Canadian Journal of Electrical and Computer Engineering, vol 40, no 3, pp. 151-161, 2017.
[67]薛小剛、葛毅敏,「Xilinx ISE 9.X FPGA/CPLD 設計指南」,人民電郵,2007年。
[68]“ML505/506/507 Overview and Setup”, Xilinx, 2008.
[69]徐文波、田耘,「Xilinx FPGA 開發實用手冊」,佳魁資訊,民國104年。
[70]陸瑞強、廖裕評,「系統晶片設計使用Quartus II」,全華圖書,民國97年。
[71]柯至遠,「低壓線路串聯電弧故障檢測之FPGA晶片設計」,碩士學位論文,國立臺灣科技大學,臺北,民國104年。

無法下載圖示 全文公開日期 2024/07/08 (校內網路)
全文公開日期 2024/07/08 (校外網路)
全文公開日期 2080/07/08 (國家圖書館:臺灣博碩士論文系統)
QR CODE