簡易檢索 / 詳目顯示

研究生: 吳習
Si Wu
論文名稱: 不同類型的離心式風機應用於空氣清淨機開發之數值模擬分析
Numerical Study of Different Centrifugal Fans Applied on a Vehicular Air Cleaner
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiuh-Kuang Yang
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 233
中文關鍵詞: 空氣清淨機前傾式離心風機徑向式離心風機後傾式離心風機風壓/流量之性能曲線數值模擬亥姆霍茲共振器
外文關鍵詞: Vehicular air cleaner, FC centrifugal fans, Radial centrifugal fans, BI centrifugal fans, Aerodynamic Performance, Helmholtz resonator, Noise reduction
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來空汙問題日趨嚴重,汙染物會透過空調與窗戶進入室內,而空氣清淨機在維持室內空氣品質中扮演重要的角色;市面上空氣清淨機常見的為前傾式離心風機,而離心風機有前傾、徑向與後傾三種類型;因此本研究將各式離心風機應用在空氣清淨機來探討其性能差異,同時為抑制其衍生之窄頻帶噪音,選用亥姆霍茲共振器來進行降噪工作。首先透過數值模擬工具進行改良設計,藉由系統化更動整體外形、葉片入口角與葉片數,優化性能後的前傾、徑向與後傾式之最大流量為28.1、22.9及14.2 CFM;接著把最適化離心風機應用於原始空氣清淨機裡,藉由模擬計算繪製壓力-流量之性能曲線,於特定限制下分析三種離心空氣清淨機,選用評比限制包括相同轉速、消耗扭矩不變與最大流量輸出一樣。結果顯示相同轉速下,效率優劣依序為前傾式、徑向式與後傾式,其值依序為25.3、25.1與6%;而消耗扭矩不變與最大流量輸出結果相同,效率優劣依序為徑向式、前傾式與後傾式,其中消耗扭矩不變之值為32.5、25.3與23.5%,而相同流量輸出依序為30.7、25.3與21.4%。
    至於濾網之高阻抗對輸出流量的影響,本研究將不同型式的空氣清淨機加入濾網後,發現和不同型式風機關連不大,其最大流量皆是未加濾網時的85%左右。接著將針對前傾離心式空氣清淨機做聲場模擬分析,且加入亥姆霍茲共振器針對特徵頻率做降噪工作,彙整其模擬結果顯示,針對第一特徵頻率設計的共振器,可降低第一特徵頻率噪音0.3~9.7 dB、且第二特徵頻噪音降低0.6~13.4 dB;而針對第二特徵頻率設計的共振器,能降低第一特徵頻噪音0.1~9.1 dB 、第二特徵頻噪音降低0.7~12.5 dB。綜合性能分析發現,徑向式風機在消耗扭矩不變與最大流量輸出一樣之條件下,無論噪音和性能皆較前傾式與後傾式為佳;而在同轉速下,前傾式離心風機則是較佳之選項。


    With the increasing air-pollution concerns, the compact air cleaner has drawn significant research attentions to develop a high-performance product to improve the air quality inside the vehicle. Hence, this study proposes a rational arrangement on filter and forward-curved (FC) centrifugal fan to minimize total resistance along airflow path for enhancing its flow rate. Also, a comprehensive parametric study on the rotor, the guiding rib, and the spiral housing is carried out in sequence to optimize its aerodynamic performance. Moreover, the radial and the backward-inclined (BI) centrifugal fans are designed and installed inside this new configuration for identifying the appropriate type. Consequently, the CFD results show that the best flow rates and static efficiencies generated by FC, radial, and BI centrifugal fans operating at 2,000 rpm are 28.1, 22.9, and 14.2 CFM and 25.3, 25.1, and 6%, respectively. Also, for thorough evaluating these centrifugal fans, their static efficiencies are calculated under the same power-consumption and flowrate-generation conditions. It is illustrated that radial centrifugal fan performs more effective than other two types. However, FC centrifugal fan is the appropriate choice for producing the best air-cleaning effect under these geometric and operating constraints.
    With regard to the noise-reduction effort, the acoustic field of the air cleaner equipped with an optimized FC centrifugal fan is calculated and analyzed carefully via the transient CFD simulation. Thus, an in-depth understanding on the acoustic features of this air cleaner is achieved and utilized to design several Helmholtz resonators, which are installed on the cut-off and the high-pressure region over the spiral housing for evaluating the associated noise-reduction outcomes via CFD tool. The calculated results demonstrated that the resonator aimed at the 1st harmonics can reduce the noise of 1st and 2nd harmonic frequencies by 0.3~9.7 dB and 0.6~13.4 dB, respectively. Also, the resonator aimed at 2nd harmonics produces the noise reduction ranging around 0.1~9.1 dB and 0.7~12. dB on the first two characteristic frequencies. In conclusion, the accomplishment of this study provides a systematic design and noise-reduction scheme for the vehicular air cleaner with the implement of Helmholtz resonator.

    目錄 摘 要 I Abstract III 致 謝 V 目 錄 VI 圖索引 X 表索引 XIV 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 離心風機 4 1.2.2 噪音控制 10 1.2.3 數值模擬 18 1.3 研究動機與目的 19 1.4 研究流程 23 第二章 空氣清淨機之簡介 28 2.1 空氣清淨機介紹 28 2.2 離心風機介紹 31 2.3 能量方程式 34 2.4 離心風機設計 37 2.4.1 葉輪尺寸 37 2.4.2 葉形之設計 39 2.4.3 葉片入口角設計 44 2.4.4 外殼設計 45 2.5 風機噪音及亥姆霍茲共振器 48 2.5.1 風機噪音 48 2.5.2 亥姆霍茲共振器設計 53 第三章 數值方法 61 3.1 統御方程式 62 3.2 紊流模組 63 3.2.1 Standard k-ε紊流模式 64 3.2.2 大尺度渦漩計算法 67 3.3 邊界條件設定 69 3.4 數值計算方法 70 3.4.1 求解流程 71 3.4.2 離散化方程式 73 3.4.3 上風差分法 75 3.4.4 速度與壓力耦合 76 3.5 聲學模式理論 78 第四章 原始空氣清淨機之流場模擬分析 82 4.1 數值模型建立 82 4.2 網格規劃 87 4.3 原始風機單體的流場分析與缺失彙整 96 4.3.1 原始風機之流場分析 96 4.3.2 原始風機之缺失整理 105 第五章 原始離心風機之設計參數優化 106 5.1 改良風機外型 106 5.2 馬達安裝位置 112 5.3 風機出口導葉 120 5.4 舌部間隙 126 第六章 不同型式離心葉輪優化之參數分析 132 6.1 前傾式葉輪 132 6.2 徑向式葉輪(輻射葉) 138 6.3 後傾式葉輪 149 6.4 不同型式的離心風機之性能比較 163 第七章 亥姆霍茲共振器應用在空氣清淨機之減噪分析 166 7.1 空氣清淨機的壓力/流量性能曲線分析 166 7.2 具濾網之空氣清淨機的流量與噪音分析 171 7.3 最適化空氣清淨機之聲場模擬分析 175 7.4 空氣清淨機的共振器設計與配置 179 7.5 裝配共振器於空氣清淨機之聲場模擬結果 184 7.5.1 共振器於整體噪音之減噪效果 185 7.5.2 共振器於特徵頻之減噪效果 189 第八章 結論與建議 200 8.1 結論 200 8.1.1 離心式風機之設計 201 8.1.2 性能曲線與聲學特性之分析 202 8.1.3 空氣清淨機之性能與噪音之整合 204 8.2 建議 205 參考文獻 207

    [1] 行政院環境保護署,細懸浮微粒(PM2.5)之健康自我保護專區,取自 https://www.hpa.gov.tw/Pages/List.aspx?nodeid=441。
    [2] 行政院環境保護署,室內空氣品質資訊網,取自 https://iaq.epa.gov.tw/indoorair/index.aspx。
    [3] Environmental Protection Agency, “Indoor Air Quality,” from https://www.epa.gov/report-environment/indoor-air-quality.
    [4] Eck, I. B., “Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans,” Pergamon Press, New York, 1973.
    [5] Leidel, W., “Einfluss Von Zungenabstand und Zungenradius Auf Kennlinie und Geräusch Eines Radialventilators,” DLR-FB69-16, 1969.
    [6] Lui, C. H., Vafidis, C., and Whitelaw, J. H., “Flow Characteristics of a Centrifugal Pump,” Journal of Fluids Engineering, Vol. 116, pp. 303-309, 1994.
    [7] 廖祿甫,渦殼對離心式泵性能的影響,國立成功大學航空太空工程學系碩士論文,1997年。
    [8] 黃家烈,筆記型電腦冷卻風扇之研究,國立台灣科技大學機械工程技術研究所博士論文,2001年。
    [9] 林顯群、林益輝與賴豐泉,吹風機性能及噪音之改善研究,中華民國「航太學會/燃燒學會/民航學會」航太聯合會議,高雄,2002年。
    [10] 李宗穎,筆記型電腦散熱模組之數值與實驗整合研究,國立台灣工業技術學院機械工程技術研究所碩士論文,2005年。
    [11] Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an FC Centrifugal Fan Rotor,” Journal of Engineering for Power, Vol. 103, pp. 393-399, 1981.
    [12] Lin, S. C., “A Novel F-C Centrifugal Fan Design for Improved Performance,” Department of Mechanical Engineering, Technical Report, Tennessee Technological University, 1982.
    [13] 吳慶財,前傾式離心扇之實驗設計,國立台灣工業技術學院機械工程技術研究所碩士論文,1993年。
    [14] Morinushi, K., “The Influence of Geometric Parameters on F. C. Centrifugal Fan Noise,” Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 109, pp. 227-234, 1987.
    [15] 許宏祺,Pentium 4 筆記型電腦冷卻風扇之實驗研究, 國立台灣科技大學機械工程技術研究所博士論文,2001年。
    [16] 楊俊欽,高性能、低噪音衛浴排風扇之實驗研究, 國立台灣科技大學機械工程技術研究所博士論文,2003年。
    [17] Gardow, E. B., “On the Relationship between Impeller Exit Velocity Distribution and Blade Channel Flow in a Centrifugal Fan,” Ph.D. Thesis, State University of New York at Buffalo, 1968.
    [18] Kjörk, A. and Löfdahl, L., “Hot-Wire Measurements inside a Centrifugal Fan Impeller,” Journal of Fluids Engineering, Vol. 111, pp. 363-368, 1989.
    [19] Dick, E. and Belkacemi, M., “Optimum Design of Centrifugal Fans and Pumps,” European Journal of Mechanical Engineering, Vol. 37, pp. 9-18, 1992.
    [20] 吳振輝,小型後傾式離心扇之設計,國立台灣工業技術學院機械工程技術研究所碩士論文,1994年。
    [21] 黃博全、黃仁智與李岳松,入口錐對後傾式離心風機性能影響之探討,第十四屆全國計算流體力學學術研討會,南投縣,2007年。
    [22] Zeller, W. and Stang, H., “Predetermination of the Axial-Flow Fans,” Heizung Luftung Haustchnik, Vol. 9, pp. 10-20, 1957.
    [23] Zeller, W., “Concerning Mathematical Treatment of Noise Behavior in Fans for Air Conditioning Plants,” VID-Berichte, No. 38, 1959.
    [24] Hübner, G, “Noise Generated by Centrifugal Fans,” Siemens-Z, Vol. 8, pp. 145-155, 1959.
    [25] Schlichting, H, “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines,” Siemens-Zeitschrift, Vol. 33, No. 7, pp. 74-82, 1959.
    [26] Powell, A., “Theory of Vortex Sound,” The Journal of the Acoustical Society of America, Vol. 36, pp. 177-195, 1964.
    [27] Smith, W. A., O’Malley, J. K., and Phelps, A. H., “Reducing Blade Passage Noise in Centrifugal Fans,” American Society of Heating, Refrigerating and Air-Conditioning Engineers Part II, Vol. 80, pp. 45-51, 1974.
    [28] Neise, W., “Noise Reduction in Centrifugal Fans: A Literature Survey,” Journal of Sound and Vibration, Vol. 45, No. 3, pp. 375-403, 1976.
    [29] Neise, W., “Review of Noise Reduction Methods for Centrifugal Fans,” Journal of Engineering for Industry, Vol. 104, pp. 151-161, 1982.
    [30] Chu, S., Dong, R., and Kate, J., “Relationship between Unsteady Flow, Pressure Fluctuations, and Noise in a Centrifugal Pump—Part B: Effects of Blade-Tongue Interactions,” Journal of Fluids Engineering, Vol. 117, pp. 30-35, 1995.
    [31] 李炫秉,聲強法在離心扇噪音診斷與控制之研究, 國立台灣科技大學機械工程技術研究所博士論文,1995年。
    [32] Choi, J.-S., McLaughlin, D. K., and Thompson, D. E., “Experiments on the Unsteady Flow Field and Noise Generation in a Centrifugal Pump Impeller,” Journal of Sound and Vibration, Vol. 263, No. 3, pp. 493-514, 2003.
    [33] Darvish, M., Frank, S., and Paschereit, C. O., “Numerical and Experimental Study on the Tonal Noise Generation of a Radial Fan,” Journal of Turbomachinery, Vol. 137, No. 10, pp. 1-9, 2015.
    [34] Neise,W. and Koopmann, G. H., “Reduction of Centrifugal Fan Noise by Use of Resonators,” Journal of Sound and Vibration, Vol. 73, No. 2, pp. 297-308, 1980.
    [35] Koopmann, G. H., and Neise,W., “The Use of Resonators to Silence Centrifugal Blowers,” Journal of Sound and Vibration, Vol. 82, No. 1, pp. 17-27, 1982.
    [36] 洪宗揚,後傾式離心風機之噪音研究,國立台灣工業技術學院機械工程技術研究所碩士論文,1996年。
    [37] 呂水煙,前傾式離心風機之噪音研究,國立台灣工業技術學院機械工程技術研究所碩士論文,1997年。
    [38] 吳御銓,λ/4減噪器應用在離心扇之數值與實務整合研究,國立台灣科技大學機械工程系碩士論文,2014年。
    [39] Alster, M., “Improved Calculation of Resonant Frequencies of Helmholtz Resonators,” Journal of Sound and Vibration, Vol. 24, No. 1, pp. 63-85, 1972.
    [40] Beranek, L. L., “Noise and Vibration Control,” Institute of Noise Control Engineering, Washington, DC, 1998.
    [41] Parente, C. A., Arcas, N., Walker, B. E., Hersh, A. S., and Rice, E. J., “Hybrid Active/Passive Jet Engine Noise Suppression System,” NASA/CR 1999-208875, 1999.
    [42] Han, M., “Sound Reduction by a Helmholtz Resonator,” Thesis and Dissertations, Lehigh University, 2008.
    [43] Han, S. H. and Rhim, Y. C., “Noise-Level Reduction of a Slim-Type Optical Disk Drive Using the Idea of a Helmholtz Resonator,” IEEE Transactions on Magnetics, Vol. 45, No. 5, pp. 2217-2220, 2009.
    [44] Zhao, X.-D., Yu, Y.-J., and Wu, Y.-J., “Improving Low-Frequency Sound Absorption of Micro-Perforated Panel Absorbers by Using Mechanical Impedance Plate Combined with Helmholtz Resonators,” Applied Acoustics, Vol. 114, pp. 92-98, 2016.
    [45] Cai, C., Mak, C.-M., and Shi, X., “An Extended Neck versus a Spiral Neck of the Helmholtz Resonator,” Applied Acoustics, Vol. 115, pp. 74-80, 2017.
    [46] Lighthill, M. J., “On Sound Generated Aerodynamically. I. General Theory,” Proc. Roy. Soc. London, Ser. A, Mathematical, Physical and Engineering Sciences, Vol. 221, No. 1107, pp. 564-587, 1952.
    [47] Lowson, M. V., “The Sound Field for Singularities in Motion,” Proc. Roy. Soc. London, Ser. A, Mathematical, Physical and Engineering Sciences, Vol. 286, No. 1407, pp. 559-572, 1965.
    [48] Arnone, A., “Viscous Analysis of Three-Dimensional Rotor Flow Using a Multigrid Method,” Journal of Turbomachinery, Vol. 116, No. 3, pp. 435-445, 1994.
    [49] Liu, Q., Qi, D., and Mao, Y., “Numerical Calculation of Centrifugal Fan Noise,” Proc. IMechE, Part C: Journal of Mechanical Engineering Science, Vol. 220, No. 8, pp. 1167-1177, 2006.
    [50] Rafael, B.-T., Sandra, V.-S., Juan Pablo, H.-C., and Carlos, S.-M., “Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan,” Journal of Fluids Engineering, Vol. 128, No. 2, pp. 359-369, 2006.
    [51] Bleier, F. P., “Fan Handbook: Selection, Application, and Design,” McGraw-Hill Education, 1997.
    [52] Ansys Fluent User’s Guide, ANSYS Inc., 2012.
    [53] Cooper Hewitt, Smithsonian Design Museum, “Let’s Clear the Air: the Rise of the Domestic Air Purifier,” from
    https://www.cooperhewitt.org/2018/12/13/lets-clear-the-air-the-rise-of-the-domestic-air-purifier/#_edn3.
    [54] General Filter – Air Quality Experts, “Norms,” from
    https://www.generalfilter.com/en/norms/.
    [55] Kondo, L. and Aoki, Y., “Noise Reduction in Turbo Fans for Air Conditioners,” Technical Review-Mitsubishi Heavy Industries, Vol. 26, No. 3, pp. 173-179, 1989.
    [56] Scientific Scribbles ,“Helmholtz Resonance Might be Driving You Nuts,” from https://blogs.unimelb.edu.au/sciencecommunication/.
    [57] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
    [58] Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
    [59] Smirnov, R., Shi, S., and Celik, I., “Randon Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling,” Journal of Fluids Engineering, Vol. 123, pp. 359-371, 2001.
    [60] Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings,” 19th AIAA Computational Fluid Dynamics Conference, San Antonio, Texas, 2009.
    [61] Ffowcs Williams, J. E., and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Vol. 264, pp. 321-342, 1969.
    [62] Curle, N., “The Influence of Solid Boundaries upon Aerodynamic Sound,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 231, pp. 505–514, 1955.
    [63] Yu, J., Zhang, T., and Qian, J., “Classification: Electric Motors, Pumps, Fans. Electrical Motor Products,” 2011.

    無法下載圖示 全文公開日期 2025/07/31 (校內網路)
    全文公開日期 2031/07/31 (校外網路)
    全文公開日期 2031/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE