簡易檢索 / 詳目顯示

研究生: 魏安幸
An-Shing Wei
論文名稱: 合成新型含苯並咪唑側基之聚苯並咪唑於中溫型燃料電池之質子傳導膜之性質研究
Synthesis and Characterization of New Polybenzimidazoles Containing Pendent Benzimidazole Groups for Proton Exchange Membrane Fuel at Intermediate Temperature
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 蔡大翔
Dah-Shyang Tsai
陳志堅
Jyh-Chien Chen
劉貴生
Guey-Sheng Liou
蕭勝輝
Sheng-Huei Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 聚苯並咪唑中溫型燃料電池苯並咪唑
外文關鍵詞: Intermediate TemperatureFuel Cell
相關次數: 點閱:282下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要合成側鏈含苯並咪唑側基之PBI聚合物,這些聚合物具有好的溶解度,其固有黏度範圍在0.98~1.37 dL/g之間,均可塗佈成具有韌性之薄膜,且有好的熱安定性,於氮氣下開始裂解溫度為635~710℃、高的玻璃轉移溫度,它的抗張強度大於90 MPa,但是當摻雜磷酸後,會使機械強度大幅下降。為了提高吸磷酸薄膜機械強度,本研究首先引進苯環含甲基側基應用於質子交換膜的交聯上,合成交聯型之C-PBI聚合物,以增進摻雜磷酸後的機械強度。在質子導電度方面,質子傳導度隨溫度與磷酸摻雜量增加而增加,其中C-PBI-1與C-PBI-2系列的質子傳導度都比m-PBI還高,例如C-5-PBI-1-20在200 ℃無水的環境下,飽和磷酸摻雜為343 wt%,質子導電度為67.4 mS/cm 比m-PBI(58.8 mS/cm)的質子傳導度高。
因此這些側鏈含苯並咪唑基之PBI及C-PBI系列薄膜具有高磷酸摻雜量、高質子傳導度和好的熱安定性,是很有潛力成為中溫型燃料電池的質子交換膜材料。


A series of new polybenzimidazoles (PBIs) with pendant benzimidazole ring have been synthesized. The resulting polymers showed good solubility in aprotic solvents. They had inherent viscosities in the range of 0.98~1.37 dLg-1, and they could form tough and flexible films. They exhibited good thermal stability with initial decomposition temperature ranging from 635 to 710 ℃, and their glass transition temperature exceeded 250℃. These films exhibited good mechanical properties with tensile stress ranging from 90 to 164 MPa.。The mechanical properties of phosphoric acid doped PBI significantly decreased. This is the first study that improved mechanical properties of proton exchange membranes using crosslinking in methyl pendent PBIs. The proton conductivity of phosphoric acid doped PBI was dependent on phosphoric acid doping level and temperatures. The proton conductivity of C-5-PBI-1-20 was approximately 67.4 mS/cm at 200℃, compared with 58.8 mS/cm of m-PBI membrane.
Thus, these PBIs and crosslinking PBIs with pendant heterocyclic ring could be the promising materials alternative to Nafion membrane for medium-temperature fuel cells applications because they had high phosphoric acid doped, good stability, and higher proton conductivity.

摘要………………………………………………………………………I ABSTRACT …………………………………………………......……II 目錄…………………………………………………………………..III FIGURE索引…………………………………………………………..VII TABLE索引………………………………………………………......X 第一章 緒論…………………………………………………………..1 1.1前言………………………………………………………………..1 1.2燃料電池的介紹…………………………….…………………...3 1.2.1燃料電池的發展…………………………………………………3 1.2.2燃料電池的特色…………………………………………………5 1.2.3燃料電池的種類………………………..………………………7 1.2.4燃料電池的原理與應用……………….………………….….10 1.3直接甲醇燃料電池的介紹……………………………………….12 1.3.1直接甲醇燃料電池的原理…………………………………….13 1.3.2直接甲醇燃料電池的核心-質子交換膜………………………14 1.4中溫型燃料電池的介紹…………………………………….……16 1.4.1中溫型燃料電池的特色…………….………………..………16 1.4.2聚苯咪唑薄膜摻雜磷酸的質子傳導機制……………….……17 1.5交聯劑的介紹…………………………….……………..……..19 1.6文獻回顧………………………………………….……...…….23 1.7研究動機……………………………….…………….…..…….30 1.8研究內容…………………………….………….……….….….33 第二章 實驗………………………………….……….…….……..34 2.1 實驗藥品…………………………………………….……..….34 2.2聚苯咪唑(Polybenzimidazole)共聚物實驗程序……….……..37 2.2.1單體合成………………………………………………….……38 2.2.2合成聚苯咪唑(PBIs)共聚物…………………………..…….38 2.2.3合成交聯型聚苯咪唑(C-PBIs)共聚物………………..…….40 2.3聚合物之物性與化性分析……………….……………..……..42 第三章 結果與討論………………………………………….……..48 3.1 PBIs的合成………………………….…………………..…….48 3.2 C-PBIs的合成…………………….…………………….….….50 3.2.1 DSC 證明…………………….………………………….…..50 3.2.2 FT-IR證明……………………………………………..…….51 3.3 固有黏度測試………….………………………………..…….52 3.4 溶解度測試………….…………………………………..…….53 3.5 熱性質測試…………….………………………………..…….55 3.6 吸濕率與膨潤度的測試…….…………………………..…….59 3.6.1 溫度對吸濕率的效應………………………………...…….59 3.6.2 溫度對膨潤度的效應………………………………...…….60 3.7磷酸吸附量的測試………..…………………………………….61 3.8質子傳導度分析………….………………………………………66 3.8.1 溫度對質子傳導度的效應……………………………………66 3.8.2磷酸摻雜量對質子傳導度的效應………….……..….…….70 3.9 氧化安定性測試………………………...…………...………71 3.10 機械性質量測………………………………….……..……..72 3.10.1未摻雜磷酸薄膜機械性質量測………………………………72 3.10.2 摻雜磷酸薄膜機械性質量測…………….………………..74 3.10.3甲基交聯對質子傳導度與機械性質的影響……..…………76 第四章 結論……………………………………………...…………77 第五章參考文獻……………………………………....…………..79

1. J. Larminie, D. Andrew, “Fuel Cell Systems Explained (2nd Edition)”, John Wiley & Sons Inc, 2003.
2. 衣寶廉,燃料電池-高效、環保的發電方式,五南圖書出版股份限公司,2003年。
3. 黃鎮江,燃料電池,全華科技圖書出版股份有限公司,2005年。
4. 黃鎮江,綠色能源,全華科技圖書出版股份有限公司,2008年。
5. 左峻德,燃料電池之特性與運用,全華科技圖書出版股份有限公司,2001年。
6. 溫武義,燃料電池技術,全華科技圖書有限公司,2004年。
7. O. Stonehart, Journal Applied Electrochemistry,1992, 22, 995.
8. S. Surampudi, S. R. Narayanan, E. Vamos, Journal of Power Sources,1994, 47, 377.
9. M. P. Hogarth, G. A. Hards, Platinum Maters Review,1996, 40, 150.
10.科技年鑑網,yearbook.stpi.org.tw。
11. B. Smitha, S. Sridhar, A. A. Khan, Journal of Membrane Science,2005, 259, 10.
12. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, Journal of the Electrochemical society,2003, 150, 1599.
13. J. A. Asensio, E. M. Sanchez, P. G. Romero, Chemical Society Review ,2010, 39, 3210.
14. S. M. Aharoni , A. J. Signorelli, Journal of Applied Polymer Science,1979, 23, 2653
15. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Journal of the Electrochemical society,2004., 151, 8.
16. Y. Chen, Y. Meng, S. Wang, S. Tian, Y. Chen, A. S. Hay, Journal of Membrane Science,2006, 280, 433.
17. J. Pang, H. Zhang, X. Li, D. Ren, Z. Jiang, Macromolecular Rapid Communications,2007, 28, 2332.
18. M. H. Jeong, K. S. Lee, Y. T. Hong, J. S. Lee, Journal of Membrane Science,2008, 314, 212.
19. M. Guo, B. Liu, S. Guan, C. Liu, H. Qin, Z. Jiang, Journal of Membrane Science,2010, 362, 38.
20. B. Liu, W. Hu, G. P. Robertson, Y. S. Kim, Z. Jiang, M. D. Guiver, Fuel Cells,2010, 10, 45.
21. B. Liu, W. Hu, Y. S. Kim, H. Zou, G. P. Robertson, Z. Jiang, M. D. Guiver, Electrochimica Acta,2010, 55, 3817.
22. K. Miyatake, A. S. Hay, Journal of Polymer Science: Part A: Polymer Chemistry,2001, 39, 3211 .
23. K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Macromolecules,2001, 34, 2065.
24. L. Wang, Y. Z. Meng, S. J. Wang, X. Y. Shang, L. Li, A. S. Hay, Macromolecules,2004, 37, 3151.
25. N. Li, D. W. Shin, D. S. Hwang, Y. M. Lee, M. D. Guiver, Macromolecules,2010, 43, 9810.
26. N. Li, D. S. Hwang, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, Macromolecules,2011, 44, 4901.
27. D. S. Kim, G. P. Robertson, Y. S. Kim, M. D. Guiver, Macromolecules,2009, 42, 957.
28. K. Shao, J. Zhu, C. Zhao, X. Li, Z. Cui, Y. Zhang, H. Li, D. Xu, G. Zhang, T. Fu, J. Wu, H. Na, W. Xing, Journal of Polymer Science: Part A: Polymer Chemistry ,2009, 47, 5772.
29. N. Tan, G. Xiao, D. Yan, Chemistry of Materials ,2010, 22, 1022.
30. S. W. Chuang, L. C. Hsu, Journal of Polymer Science: Part A: Polymer Chemistry ,2006, 44, 4508.
31. G. Qian, B. C. Benicewicz, Journal of Polymer Science: Part A: Polymer Chemistry,2009, 47, 4064.
32. H. Pu, L. Wang, H. Pan, D. Wan, Journal of Polymer Science: Part A: Polymer Chemistry ,2010, 48, 2115.
33. Q. F. Li, R. H. He, J. O. Jensen, N.J. Bjerrum, Journal of the Electrochemiacl society,2003, 150, 1599.
34. T.D. Dang,L.S. Tan and F.E. Arnold, Polymer Preprints ,1990, 31(1),451.
35. F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, Journal of Membrane Science ,2002, 197, 231.
36. Y. L. Ma, J. S. Wainright, M. H. Litt, R. F. Savinell, Journal of the Electrochemical society ,2004, 151, 8.

無法下載圖示 全文公開日期 2018/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE