簡易檢索 / 詳目顯示

研究生: 陳佑任
Yu-Jen Chen
論文名稱: 鋅摻雜鑭鍶鈷鐵氧化物於固態氧化物燃料電池陰極之特性研究
Investigation in Lanthanum Strontium Cobalt Zinc Iron Oxide of Solid oxide Fuel Cells cathode materials
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 蔡大翔
Dah-Shyang Tsai
徐錦志
Jiin-Jyh Shyu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 137
中文關鍵詞: 陰極鑭鍶鈷鋅鐵氧化物氧還原反應電化學交流阻抗圖譜固態氧化物燃料電池
外文關鍵詞: cathode, Solid Oxide fuel cell, Oxygen Reduction Reaction
相關次數: 點閱:314下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將探討La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d (x=0.0、0.2、0.4、0.6、0.8、1.0)陰極材料,搭配在本實驗室所開發出具有優異導電率的電解質Ce0.78Gd0.2Sr0.02O1.9-x(GDC+Sr)來進行半電池測試。試片製作將控制陰極孔隙率約為31.25%,使用電化學交流阻抗圖譜術(EIS)來探討影響陰極氧還原反應之極化損失與陰極的電化學反應,並搭配X-ray繞射(XRD)分析晶體結構、掃描式顯微鏡(SEM)分析微結構、熱機械分析儀(TMA)分析熱膨脹係數與熱差/熱重分析儀(DTA/TGA)分析是否有相變化現象。
    La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d成份變化由XRD分析為單一相的菱方晶(Rhombohedral)鈣鈦礦結構,a=b=c,因為鋅離子半徑大於鈷離子半徑約22%,所以當鋅逐漸取代鈷,其晶格常數與體積擴大。
    根據同步熱差與熱重分析組成x = 0.0~1.0於量測溫度500~800℃間之實驗數據顯示出無明顯相變化現象,表示陰極/電解質界面能穩定搭配。在熱機械分析實驗數據得各組成之緻密塊材隨著溫度增加,而熱膨脹率近似線性增長,熱膨脹係數(Thermal expansion coefficient,TEC)隨著鋅元素摻雜取代鈷元素呈現下降的趨勢,由16.8下降至13.31 10-6k-1。直流四點探針的量測發現到在La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d,x = 0.0,純粹鈷元素沒摻雜鋅元素,其導電性最佳,在650℃達到229 S/cm,隨著鋅元素添加會導致導電性下降,而在x = 1.0,鋅元素全數取代鈷元素,其導電性(61 S/cm,600℃)為最差。
    由電化學交流阻抗圖譜發現La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d系列B-site隨著鋅元素摻雜取代鈷元素,在x = 0.4、0.6與0.8呈現出低的極化阻抗(0.273、0.240 & 0.15 Ωcm2,800℃) 。分析其極化阻抗於高頻區域的阻值差異不大,但在中、低頻區域的阻值,因為B-site使用二價的鋅元素摻雜取代浮動價數的鈷元素造成電荷不平衡,會形成更多氧空缺,加速氧離子傳遞,而且鈷元素會二、三、四價數轉換來提供電子,說明B-site 鋅元素與鈷元素共存會有更低的氧化還原阻抗。此實驗結果與電化學分析(鐵弗曲線之交換電流密度、極化曲線與循環伏安曲線)之數據皆呈現出相同的趨勢。
    在LSCZF材料組成中,以La0.6Sr0.4(Co0.2 Zn0.8)0.2Fe0.8O3-d擁有最佳特性:極低極化阻抗0.15 Ωcm2,800℃)、較LSCZF0.0(16.8 10-6k-1)低的熱膨脹係數(13.95 10-6k-1)與較佳的交換電流密度(331.41 mA/cm2,800℃)具有良好的催化特性,其特性皆優於La0.6Sr0.4Co0.2 Fe0.8O3-d與La0.6Sr0.4Zn0.2 Fe0.8O3-d母材,成為均衡性佳且催化特性優異的新型固態氧化物陰極材料。


    This research was focused on the Cathode material, La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d(x=0.0、0.2、0.4、0.6、0.8、1.0), to go through the half-cell test with excellent electrical conductivity of the electrolyte Ce0.78Gd0.2Sr0.02O1.9-x(GDC+Sr) developed by our laboratory. The cathode porosity of test chip/fragment was controlled to be approximately 31.25±3% for evaluating the effect on polarization loss of cathode oxygen reduction reaction and electrical chemical reaction with electrochemical impedance spectroscopy (EIS). A combination of analytical techniques were applied X-ray diffraction for interpreting the crystal structure, scanning electron microscope (SEM) for examining micro-structures, thermo mechanical analyzer (TMA) for finding thermal expansion coefficient (TEC) and (DTA/TGA) thermal analyzers for analyzing the presence of Phase & Change.

    The variation in component of La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d
    analyzed by XRD was single-based Rhombohedral Perovskite, a=b=c. The lattice constant and volume were expanded when Zinc ionic substitutes for Cobalt ionic due to the radius of Zinc was 22% being wider than that of Cobalt.

    According to the statistics from (DTA/TGA) thermal analysis, there was no Phase & Change when x was 0.0~1.0 at 500~800℃ which meant the interface between cathode and electrolyte was stable. In addition, based on the statistics from thermo mechanical analysis, the thermal expansion coefficient of the bulk grew as the temperature increases. Moreover, the thermal expansion coefficient decreased from 16.8 to 13.31 10-6k-1 if Zinc substituted for Cobalt.

    On the basis of electrical chemical alternating electrical impedance atlas method (x = 0.4, 0.6, 0.8) when Cobalt was replaced by Zinc, the cathode electrical impedance of B-site in La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-d
    series was low (0.273、0.240 & 0.15 Ωcm2,800℃).

    The difference of cathode electrical impedance (Co -> Zn) in the high frequency region was not obvious. However, among middle and low frequency regions, the imbalance of electric charge caused by adopting the valence two Zinc to B-site instead of Cobalt with floating valence created a lot of oxygen vacancies, accelerating the circulation. Electrons were provided by cobalt switching from valence two, three, to four as well, and therefore the electrical impedance of oxygen reduction reaction was low when coexistence of B-site Zinc and Cobalt. The trend of the testing result statistics was the same as that of electrochemical analysis; such as electric current-switched density of Tafel Curve, Polarization Curve, and Cyclic Voltammetry Curve.

    Among the components of LSCZF, La0.6Sr0.4(Co0.2 Zn0.8)0.2Fe0.8O3-d
    performed the best because the cathode electrical impedance was quite low (0.15 Ωcm2,800℃) and the thermal expansion coefficient (13.95 10-6k-1) is lower than LSCZF0.0(16.8 10-6k-1). Additionally the catalysis was significantly imporoved, due to the higher electric current-switched density. The overall performance of La0.6Sr0.4(Co0.2 Zn0.8)0.2Fe0.8O3-d was found to be better than that of the precursor of La0.6Sr0.4Co0.2 Fe0.8O3-and La0.6Sr0.4Zn0.2 Fe0.8O3-,and was proposed as an innovative solid oxide Cathode material with good compatibility and catalysis.

    中文摘要…………………………………………………………………I 英文摘要……………………………………………………………..…III 致謝……………………………………………………………………...V 目錄………………………………………………………..…………..VII 圖索引……………………………………………………………….....XII 表索引...……………………………………………………………...XVII 第一章 緒 論 1 1-1 前言 1 1-2研究動機與目的 5 第二章 文獻回顧 7 2-1燃料電池(fuel cell)概述 7 2-1-1 燃料電池基本架構 8 2-1-2 燃料電池的種類 9 2-2 固態氧化物燃料電池(Solid Oxide fuel cell)介紹 10 2-2-1 固態氧化物燃料電池基本架構 11 2-2 固態氧化物燃料電池電極工作基本原理 12 2-2-1 固態氧化物燃料電池的結構 13 2-3 陰極材料系統 16 2-3-1 鈣鈦礦結構 16 2-3-2 鈣鈦礦結構之陰極發展狀況 17 2-3-3 鈣鈦礦結構之穩定性 19 2-3-4 鈣鈦礦氧化物之氧離子導電性 20 2-3-5 陰極材料之選用 21 2-4 陰極/電解質界面之電化學反應 25 2-4-1 電極之極化效應 25 2-5固態氧化物燃料電池之陰極氧還原反應機構 29 2-5-1陰極氧還原反應路徑 30 2-5-2陰極氧還原反應步驟 32 2-6中溫電解質材料高離子導電(GDC-Sr)搭配陰極材料 36 2-7 電化學交流阻抗圖譜(EIS) 39 2-7-1電化學交流阻抗圖譜之基礎理論 40 2-7-2 電化學交流阻抗圖譜之等效電路 41 第三章 實驗方法與步驟 49 3-1 實驗藥品規格及儀器總表 49 3-2 實驗流程 51 3-3 實驗試片製作 53 3-3 試片物理性質的量測 58 3-3-1 粉末粒徑分析 58 3-3-2密度之量測 58 3-3-3 X-ray繞射分析 59 3-3-4 SEM表面影像分析 59 3-3-5 EDS元素分析 60 3-3-6 電極孔隙率分析(2D影像分析) 60 3-3-7 熱重(TGA)及熱差(DTA)分析儀之量測 61 3-3-8 熱機械分析儀(TMA)量測 61 3-3-9導電性量測 61 3-4 陰極/電解質(LSCZF/GDC)界面電化學分析 65 3-4-1 LSCZF/GDC/Pt半電池之電解質製作 65 3-4-2 LSCZF/GDC/Pt半電池製作 66 3-4-3極化阻抗量測 67 3-4-4鐵弗曲線(Tafel polt)量測 68 3-4-5循環伏安法(Cyclic Voltammetry)之測量 70 第四章 結果與討論 71 4-1 X-ray繞射分析 71 4-2粒徑分析 73 4-3燒結塊材密度 74 4-3-1塊材表面微觀分析 77 4-4陰極微結構分析 80 4-4-1孔隙度分析 83 4-5熱重與熱差分析(TG/DTA) 86 4-6 La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-材料的熱膨脹性質研究 88 4-7 LSCZF導電性 92 4-7-1 La0.6Sr0.4(Co1-x Znx)0.2Fe0.8O3-電極材料之導電率 92 4-7-2 EIS交流阻抗分析圖譜 94 4-7-3整體-交流阻抗分析 96 4-7-4 操作溫度800℃-交流阻抗分析 101 4-7-5 Zn含量與操作溫度影響-交流阻抗分析 106 4-8 陰極活性分析探討 110 4-8-1 氧化還原催化速率 110 4-8-2 鋅元素含量對氧化還原催化速率探討 114 4-8-3 鐵弗曲線與EIS分析交叉比對 116 4-8-4極化曲線 118 4-8-5 LSCZF於操作溫度800℃之極化曲線 118 4-8-6 循環伏安法(Cyclic voltammetry) 121 4-8-7 LSCZF於操作溫度800℃之極化曲線 121 第五章 結論 124 未來展望 129 文獻探討 130 作者簡介 137

    1. Schoonman J, Dekker J P, Broers J W and Kiwiet N J 1991. Electrochemical vapor deposition of stabilized zirconia and interconnection materials for solid oxide fuel cells. Solid State Ionics 46, 299-308.
    2. Setoguchi T, Sawano M, Eguchi K and Arai H 1990. Application of the stabilized zirconia thin film prepared by spray pyrolysis method to SOFC. Solid State Ionics 40-41, 502-505.
    3. Koichi E, Toshihiko S and Hiromichi A 1991. Thin film fabrication of stabilized zirconia for solid oxide fuel cells. Vacuum 42, 1061.
    4. Hibino T, Hashimoto A, Asano K, Yano M, Suzuki M and Sano M 2002. An intermediate-temperature solid oxide fuel cell providing higher performance with hydrocarbons than with hydrogen. Electrochemical and Solid-State Letters 5, 242-244.
    5. Shao Z and Halle S M 2004. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170-173.
    6. Steele B C H 2000. Materials for IT-SOFC stacks - 35 years R&D: The inevitability of gradualness? Solid State Ionics 134, 3-20.
    7. Tsiakaras P, Marnellos G, Athanasiou C, Stoukides M, Elshof J E, Bouwmeester H J M and Verweij H 1996. Electrode polarization and electrical properties of the La0.6Sr0.4Co0.8Fe0.2O3-δ, O2/yttria stabilized zirconia interface: effect of gas phase composition and temperature. Solid State Ionics 86-88, 1451-1456.
    8. Jiang S P 2003. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources 124, 390-402.
    9. Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H, Tagawa H, Dokiya M, Naraya K, Sasamoto T, Inaba H and Hashimoto T 2000. Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-xSrxMnO3. Solid State Ionics 132, 167-180.
    10. Tai L W, Nasrallah M M, Anderson H U, Sparlin D M and Sehlin S R 1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 2. The system La1-xSrxCo0.2Fe0.8O3. Solid State Ionics 76, 273-283.
    11. Tai L W, Nasrallah M M, Anderson H U, Sparlin D M and Sehlin S R 1995. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3. Solid State Ionics 76, 259-271.
    12. Mag P and Crove W R 1839. 43, 727.
    13. Nernst W 1989. Electrochemical and Solid-State Letters 6, 41.
    14. Baur E and Preis H 1937. Electrochemical and Solid-State Letters 43, 727.
    15. Minh N Q 1991. CHEMTECH 21, 100.
    16. 黃鎮江 2003. 燃料電池. 全華科技圖書.
    17. Ota T, Koyama M, Wen C-J, Yamada K and Takahashi H 2003. Object-based modeling of SOFC system: Dynamic behavior of micro-tube SOFC, pp. 430-439, (Elsevier, Amsterdam, Netherlands).
    18. Daun K J, Beale S B, Liu F and Smallwood G J 2006. Radiation heat transfer in planar SOFC electrolytes. Journal of Power Sources 157, 302-310.
    19. Lu Y and Schaefer L 2006. Numerical study of a flat-tube high power density solid oxide fuel cell: Part II: Cell performance and stack optimization. Journal of Power Sources 153, 68-75.
    20. Gardner F J, Day M J, Brandon N P, Pashley M N and Cassidy M 2000. SOFC technology development at Rolls-Royce. Journal of Power Sources 86, 122-129.
    21. Takeda Y, Sakaki Y, Tu H Y, Phillipps M B, Imanishi N and Yamamoto O 2000. Perovskite oxides for the cathode in solid oxide fuel cells. Electrochemistry 68, 764-770.
    22. 毛宗強 2005. 燃料電池. 化學工業出版社(北京), 275-304.
    23. Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales J C, Buergler B E, Nunez P and Gauckler L J 2006. Fuel cell studies of perovskite-type materials for IT-SOFC. Journal of Power Sources 159, 914-921.
    24. Ohara S, Maric R, Zhang X, Mukai K, Fukui T, Yoshida H, Inagaki T and Miura K 2000. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode. Journal of Power Sources 86, 455-458.
    25. Dusastre V and Kilner J A 1999. Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126, 163-174.
    26. Zhang Y, Liu J, Huang X, Lu Z and Su W 2008. Low temperature solid oxide fuel cell with Ba0.5Sr0.5Co0.8Fe0.2O3 cathode prepared by screen printing. Solid State Ionics 179, 250-255.
    27. Wei B, Lu Z, Huang X, Liu M, Li N and Su W 2008. Synthesis, electrical and electrochemical properties of Ba0.5Sr0.5Zn0.2Fe0.8O3-δ perovskite oxide for IT-SOFC cathode. Journal of Power Sources 176, 1-8.
    28. F. Donald Bloss. Crystallography and Crystal Chemistry, 253.
    29. Mai A, Haanappel V a C, Tietz F and Stover D 2005. A-site deficient lanthanum ferrites as cathode materials for SOFCs, pp. 1627-1635, (Electrochemical Society Inc., Pennington, NJ 08534-2896, United States, Quebec, Canada).
    30. Ciambelli P, Cimino S, Lisi L, Faticanti M, Minelli G, Pettiti I and Porta P 2001. La, Ca and Fe oxide perovskites: Preparation, characterization and catalytic properties for methane combustion. Applied Catalysis B: Environmental 33, 193-203.
    31. Hrovat M, Bernik S, Holc J, Kuscer D and Kolar D 1997. Preliminary data on solid solubility between LaCrO3 and LaFeO3 or LaMnO3. Journal of Materials Science Letters 16, 143-146.
    32. Simner S P, Anderson M D, Engelhard M H and Stevenson J W 2006. Degradation mechanisms of La-Sr-Co-Fe-O3 SOFC cathodes. Electrochemical and Solid-State Letters 9, 478-481.
    33. Tsipis E V, Patrakeev M V, Kharton V V, Yaremchenko a A, Mather G C, Shaula a L, Leonidov I A, Kozhevnikov V L and Frade J R 2005. Transport properties and thermal expansion of Ti-substituted La 1-xSrxFeO3-δ (x = 0.5-0.7). Solid State Sciences 7, 355-365.
    34. Bongio E V, Black H, Raszewski F C, Edwards D, Mcconville C J and Amarakoon V R W 2005. Microstructural and high-temperature electrical characterization of La 1 - XSrxFeO3 - &delta. Journal of Electroceramics 14, 193-198.
    35. Marina O A, Coffey G W, Pederson L R, Rieke P C, Thomsen E C and Williams M C 2004. Electrode development for reversible solid oxide fuel cells, pp. 1725, (Electrochemical Society Inc., Pennington, NJ 08534-2896, United States, Honolulu, HI, United States).
    36. Chiba R, Yoshimura F and Sakurai Y 2002. Properties of La1-ySryNi1-xFexO3 as a cathode material for a low-temperature operating SOFC. Solid State Ionics 152-153, 575-582.
    37. Stevenson J W, Armstrong T R, Carneim R D, Pederson L R and Weber W J 1996. Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFeyO3-δ (M = Sr, Ba, Ca). Journal of the Electrochemical Society 143, 2722-2729.
    38. Huang K, Wan J and Goodenough J B 2001. Oxide-ion conducting ceramics for solid oxide fuel cells. Journal of Materials Science 36, 1093-1098.
    39. Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Sprenkle V L and Stevenson J W 2002. Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs. Electrochemical and Solid-State Letters 5, 173-175.
    40. Gupta R K and Whang C M 2007. Structural study of a sol-gel derived novel solid oxide fuel cell perovskite: (La1-xSrx)(Cr0.85Fe 0.05Co0.05Ni0.05)O3-&delta. Journal of Physics Condensed Matter 19, 196209.
    41. Swierczek K and Gozu M 2007. Structural and electrical properties of selected La1-xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides. Journal of Power Sources 173, 695-699.
    42. Brant M C, Matencio T, Dessemond L and Domingues R Z 2006. Electrical degradation of porous and dense LSM/YSZ interface. Solid State Ionics 177, 915-921.
    43. Huang Y, Vohs J M and Gorte R J 2006. SOFC cathodes prepared by infiltration with various LSM precursors. Electrochemical and Solid-State Letters 9, 237-240.
    44. Lu C, Sholklapper T Z, Jacobson C P, Visco S J and De Jonghe L C 2006. LSM-YSZ cathodes with reaction-infiltrated nanoparticles. Journal of the Electrochemical Society 153, 1115-1119.
    45. Sholklapper T Z, Lu C, Jacobson C P, Visco S J and De Jonghe L C 2006. LSM-infiltrated solid oxide fuel cell cathodes. Electrochemical and Solid-State Letters 9, 376-378.
    46. Imanishi N, Matsumura T, Sumiya Y, Yoshimura K, Hirano A, Takeda Y, Mori D and Kanno R 2004. Impedance spectroscopy of perovskite air electrodes for SOFC prepared by laser ablation method. Solid State Ionics 174, 245-252.
    47. Yang Z, Xia G-G, Maupin G D and Stevenson J W 2006. Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. Journal of the Electrochemical Society 153, 1852-1858.
    48. Zhao F, Peng R and Xia C 2008. LSC-based electrode with high durability for IT-SOFCs. Fuel Cells Bulletin 2008, 12-16.
    49. 甘世暄 2006. 以鑭鐠鍶鈷鐵氧化物做為固態氧化物燃料電池陰極之研究, 74.
    50. Wei B, Lu Z, Huang X, Liu Z, Miao J, Li N and Su W 2007. Ba0.5Sr0.5Zn0.2Fe0.8O 3-δ perovskite oxide as a novel cathode for intermediate-temperature solid-oxide fuel cells. Journal of the American Ceramic Society 90, 3364-3366.
    51. Caro J, Wang H H, Tablet C, Kleinert A, Feldhoff A, Schiestel T, Kilgus M, Kolsch P and Werth S 2006. Evaluation of perovskites in hollow fibre and disk geometry in catalytic membrane reactors and in oxygen separators. Catalysis Today 118, 128-135.
    52. Wang H, Tablet C, Feldhoff A and Caro J 2005. A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O 3-&delta. Advanced Materials 17, 1785-1788.
    53. Jiang S P and Love J G 2001. Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells. Solid State Ionics 138, 183-190.
    54. Li S, Lu Z, Wei B, Huang X, Miao J, Liu Z and Su W 2008. Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. Journal of Alloys and Compounds 448, 116-121.
    55. Qingshan Z, Tongan J and Yong W 2006. Thermal expansion behavior and chemical compatibility of BaxSr1-xCo1-yFeyO3-& delta; with 8YSZ and 20GDC. Solid State Ionics 177, 1199-1204.
    56. Fung K Z, Virkar a V, Dokiya M, Yamamoto O, Tagawa H and Singhal S C 1995. Proceeding of the 4th international Symposium on Solid
    Oxide Fuel Cells, 1105.
    57. Kenjo T and Yamakoshi Y 1992. Relaxation phenomena of the concentration polarization in high-temperature air cathodes. Bull. Chem. Soc. Jpn. 65, 995.
    58. Kim J W, Virkar a V, Fung K Z, Mehta K and Singhal S C 1999. Low Temperature, High Performance Anode-Supported Solid Oxide Fuel Cells. J. Electrochem. Soc. 146, 69.
    59. Herbstritt D, Weber A and Ivers-Tiffee E 2001. Modelling and DC-polarisation of a three dimensional electrode/electrolyte interface. Journal of the European Ceramic Society 21, 1813-1816.
    60. Tsai T and Barnett S A 1997. Effect of LSM-YSZ cathode on thin-electrolyte solid oxide fuel cell performance. Solid State Ionics 93, 207-217.
    61. Adler S B, Lane J A and Steele B C H 1996. Electrode kinetics of porous mixed-conducting oxygen electrodes. Journal of the Electrochemical Society 143, 3554-3564.
    62. Kenjo T, Osawa S and Fujikawa K 1991. High temperature air cathodes containing ion conductive oxides. Journal of the Electrochemical Society 138, 349-355.
    63. Kenjo T and Nishiya M 1992. LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature solid oxide fuel cells. Solid State Ionics 57, 295-302.
    64. Deng H, Zhou M and Abeles B 1995. Diffusion-reaction in mixed ionic electronic conductor solid oxide membranes with porous electrodes, pp. 415-420, (Materials Research Society, Pittsburgh, PA, USA, Boston, MA, USA).
    65. Singhal S C and Kendall K 2003. High Temperature Solid Oxide Fuel Cells. Elsevier
    66. Kim J W, Virkar a V, Fung K Z, Mehta K and S. C. Singhal 1999. Low Temperature High Performance Anode-Supported Solid Oxide Fuel Cells. J. Electrochem. Soc 146, 69.
    67. Fleig J 2003. RECENT ADVANCES IN MATERIALS FOR FUEL CELLS. Annu. Rev. Mater. Res 33, 361-382.
    68. Brichzin V, Fleig J, Habermeier H U and Maier J 2000. Geometry dependence of cathode polarization in solid oxide fuel cells investigated by defined Sr-doped LaMnO3 microelectrodes. Electrochemical and Solid-State Letters 3, 403-406.
    69. Van Herle J, Mcevoy a J and Ravindranathan Thampi K 1996. Study on the La1-xSrxMnO3 oxygen cathode. Electrochimica Acta 41, 1447-1454.
    70. Ioroi T, Hara T, Uchimoto Y, Ogumi Z and Takehara Z I 1997. Preparation of perovskite-type La1-xSrxMnO3 films by vapor-phase processes and their electrochemical properties. Journal of the Electrochemical Society 144, 1362-1370.
    71. Siebert E, Hammouche A and Kleitz M 1995. Impedance spectroscopy analysis of La1-xSrxMnO3-yttria-stabilized zirconia electrode kinetics. Electrochimica Acta 40, 1741.
    72. Hammouche A, Siebert E, Hammou A, Kleitz M and Caneiro A 1991. Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1-xSrxMnO3. Journal of the Electrochemical Society 138, 1212-1216.
    73. Ivers-Tiffée, A.Webe and Schichlein H 2003. Handbook Fuel Cell3, chap.9.
    74. 張凱翔 2006. 異價離子共摻雜對氧化鈰之微結構與導電性之影響.
    75. Wang F-Y, Chen S, Wang Q, Yu S and Cheng S 2004. Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Catalysis Today 97, 189-194.
    76. Barsoukov E and Macdonald J R 2005. Impedance Spectroscopy, Theory Experiment and Applications. John Wiley & Sons, Inc.
    77. Hsu C H, Mansfeld F and Corrosion 2001. 57(9), 747.
    78. Marie-Florence Grenier-Loustalot S L, Daniel Grande, Philippe Grenier and Didier Bedel 1996. Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics Published by Elsevier Science Ltd 37, 1369.
    79. Adler S B 2004. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews 104, 4791-4843.
    80. Moulder J F, Stickle W F, Sobol P E and Bomben K D 1995. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc, 89.
    81. Http://Abulafia.Mt.Ic.Ac.Uk/Shannon/Ptable.Php.
    82. Co a C, Xia S J and Birss V I 2005. A kinetic study of the oxygen reduction reaction at LaSrMnO3-YSZ composite electrodes. Journal of the Electrochemical Society 152, 570-576.
    83. Leng Y J, Chan S H, Khor K A and Jiang S P 2004. Development of LSM/YSZ composite cathode for anode-supported solid oxide fuel cells. Journal of Applied Electrochemistry 34, 409-415.
    84. Van Heuveln F H and Bouwmeester H J M 1997. Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia. II. Electrode kinetics. Journal of the Electrochemical Society 144, 134-140.
    85. Van Heuveln F H, Bouwmeester H J M and Van Berkel F P F 1997. Electrode properties of Sr-doped LaMnO3 on yttria-stabilized zirconia. I. Three-phase boundary area. Journal of the Electrochemical Society 144, 126-133.
    86. Qiu L, Ichikawa T, Hirano A, Imanishi N and Takeda Y 2003. Ln1-xSrxCo1-yFeyO3-& delta; (Ln=Pr, Nd, Gd; X=0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158, 55-65.
    87. Lee H Y, Cho W S, Oh S M, Wiemhofer H D and Gopel W 1995. Active reaction sites for oxygen reduction in La0.9Sr0.1MnO3/YSZ electrodes. Journal of the Electrochemical Society 142, 2659-2664.

    QR CODE