簡易檢索 / 詳目顯示

研究生: 謝易宏
Yi-Hung Hsieh
論文名稱: 常壓電漿噴射束於鄰-二甲苯去除之研究
The Removal of o-Xylene by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 魏大欽
Ta-Chin Wei
黃 駿
Chun Huang
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 常壓電漿噴射束易揮發有機化合物電漿功率聚能型噴嘴
外文關鍵詞: Atmospheric Pressure Plasma Jet, Decompose Volatile Organic Compounds, Plasma Power, Converging Nozzle
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


第一章 緒論 1.1 前言 1.2 研究目的與動機 第二章 文獻回顧 2.1 易揮發有機物(Volatile Organic Compounds, VOCs) 2.2 易揮發性有機物來源 2.3 VOCs廢氣處理之技術 2.3.1 冷凝 (Condensation) 2.3.1.1 原理及應用 2.3.1.2 冷凝設備 2.3.2 焚化 (Combustion) 2.3.2.1 直接式焚化法 2.3.2.2 觸媒焚化法 (Catalytic Oxidize, CAO) 2.3.2.3 蓄熱式焚化法 (Regenerative Thermal Oxidizer, RTO) 2.3.3 吸收 (Absorption) 2.3.4 吸附 (Adsorption) 2.3.5 生物處理法 (Biological Treatment) 2.3.6 高級氧化法 (Advanced Oxidation Processes) 2.3.7 靜電吸附 (Electrostatic Adsorption) 2.3.8 電漿裂解法 (Plasmas Decompose) 2.4 電漿基本介紹 2.4.1 電漿原理及反應機制 2.4.2 電漿分類 第三章 實驗流程與設備 3.1 研究設計 3.2 實驗步驟 3.2.1 鄰-二甲苯氣體 (o-Xylene) 3.2.2常壓電漿噴射束反應系統設置 3.3 實驗設備與原理 3.3.1 常壓電漿噴射束反應系統 (Atmospheric Pressure Plasma Jet Reaction System, APPJ Reaction System) 3.4.1 攜帶式複合式氣體偵測器 (Portable Multi Gas Detector for VOCs) 3.4.2 可攜式氣體分析儀 (Portable Gas Analyzer for NOx) 3.4.3 非分散式紅外線光譜儀 (Non-Dispersive Infrared, NDIR) 3.4.5 氣相層析分析儀 (Gas Chromatograph-Flame Ionization Detector, GC-FID) 3.4.6 氣相層析質譜儀 (Gas Chromatograph-Mass Spectrometer, GC-MS) 3.4.7 光學放射光譜儀 (Optical Emission Spectroscopy, OES) 3.4.8 熱電偶溫度計 (Thermocouple Thermometer) 第四章 結果與討論 4.1電漿溫度效應 4.2光學放射光譜儀分析 4.3揮發性有機化合物分析 4.4氣相層析儀分析 4.5氣相層析質譜儀分析 4.6 紅外線光譜儀之尾氣分析 4.7常壓電漿噴射束尾氣副產物氣體分析 4.8 鄰-二甲苯之熱裂解 4.9常壓電漿噴射束對鄰-二甲苯裂解機制 第五章 結論 第六章 未來展望

[1] M. P. Fraser, G. R. Cass, and B. R. T. Simoneit, “Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel,” Environmental Science and Technology, vol. 32, no. 14, pp. 2051–2060, 1998.
[2] R. Fortmann, N. Roache, J. C. S. Chang, and Z. Guo, “Characterization of emissions of volatile organic compounds from interior alkyd paint,” Journal of the Air and Waste Management Association, vol. 48, no. 10, pp. 931–940, 1998.
[3] J. D. McDonald, B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson, “Emissions from charbroiling and grilling of chicken and beef,” Journal of the Air and Waste Management Association, vol. 53, no. 2, pp. 185–194, 2003.
[4] M. O. Andreae and P. Merlet, “Emission of trace gases and aerosols from biomass burning,” Global Biogeochemical Cycles, vol. 15, no. 4, pp. 955–966, 2001.
[5] R. Fall, T. Karl, A. Hansel, A. Jordan, and W. Lindinger, “Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry,” Journal of Geophysical Research Atmospheres, vol. 104, no. 13, pp. 15963–15974, 1999.
[6] I. E. Galbally and W. Kirstine, “The production of methanol by flowering plants and the global cycle of methanol,” Journal of Atmospheric Chemistry, vol. 43, no. 3, pp. 195–229, 2002.
[7] U. Kumar, A. Prakash, and V. K. Jain, “A photochemical modelling approach to investigate O3 sensitivity to NOx and VOCs in the urban atmosphere of delhi,” Aerosol and Air Quality Research, vol. 8, no. 2, pp. 147–159, 2008.
[8] D. S. Alvim, L. V. Gatti, S. M. Corrêa, J. B. Chiquetto, G. M. Santos, C. D. S. Rossatti, A. Pretto, J. R. Rozante, S. N. Figueroa, J. Pendharkar, and P. Nobre, “Determining VOCs Reactivity for Ozone Forming Potential in the Megacity of São Paulo,” Aerosol and Air Quality Research, vol. 18, no. 9, pp. 2460–2474, 2018.
[9] R. Koppmann, “Volatile Organic Compounds in the Atmosphere. ” Oxford, UK: Blackwell Publishing Ltd, 2007.
[10] 行政院環境保護署,「固定污染源空氣污染物排放標準」,2013。https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015350
[11] 全國法規資料庫,「揮發性有機物空氣污染管制及排放標準」,2013。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020030
[12] United States Environmental Protection Agency, “Technical Overview of Volatile Organic Compounds.” https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#8
[13] Y. M. Kim, S. Harrad, and R. M. Harrison, “Concentrations and sources of VOCs in urban domestic and public microenvironments,” Environmental Science and Technology, vol. 35, no. 6, pp. 997–1004, 2001.
[14] H. Guo, S. C. Lee, W. M. Li, and J. J. Cao, “Source characterization of BTEX in indoor microenvironments in Hong Kong,” Atmospheric Environment, vol. 37, no. 1, pp. 73–82, 2003.
[15] A. Mazzatenta, M. Pokorski, F. Sartucci, L. Domenici, and C. di Giulio, “Volatile organic compounds (VOCs) fingerprint of Alzheimer’s disease,” Respiratory Physiology and Neurobiology, vol. 209, pp. 81–84, 2015.
[16] M. Hulin, M. Simoni, G. Viegi, and I. Annesi-Maesano, “Respiratory health and indoor air pollutants based on quantitative exposure assessments,” European Respiratory Journal, vol. 40, no. 4, pp. 1033–1045, 2012.
[17] U. B. Nurmatov, N. Tagiyeva, S. Semple, G. Devereux, and A. Sheikh, “Volatile organic compounds and risk of asthma and allergy: A systematic review,” European Respiratory Review, vol. 24, no. 135, pp. 92–101, 2015.
[18] P. Gerner-Smidt and U. Friedrich, “The mutagenic effect of benzene, toluene and xylene studied by the SCE technique,” Mutation Research/Genetic Toxicology, vol. 58, no. 2–3, pp. 313–316, 1978.
[19] S. Burgaz, O. Erdem, G. Čakmak, N. Erdem, A. Karakaya, and A. E. Karakaya, “Cytogenetic analysis of buccal cells from shoe-workers and pathology and anatomy laboratory workers exposed to n-hexane, toluene, methyl ethyl ketone and formaldehyde,” Biomarkers, vol. 7, no. 2, pp. 151–161, 2002.
[20] R. Chena, J. Li, J. Sheng, W. Cuib, X. Dong, P. Chenb, H. Wang, Y. Sun, and F. Dong, “Unveiling the unconventional roles of methyl number on the ring-opening barrier in photocatalytic decomposition of benzene, toluene and o-xylene,” Applied Catalysis B: Environmental, vol. 278, 2020.
[21] 余騰耀,「總量管制空氣污染物削減技術手冊」,經濟部工業局,2002。
[22] H. Luo, G. Li, J. Chen, Q. Lin, S. Ma, Y. Wang, and T. An, “Spatial and temporal distribution characteristics and ozone formation potentials of volatile organic compounds from three typical functional areas in China,” Environmental Research, vol. 183, 2020.
[23] S. Weon and W. Choi, “TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds,” Environmental Science and Technology, vol. 50, no. 5, pp. 2556–2563, 2016.
[24] S. Weon, F. He, and W. Choi, “Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: Visible light utilization and catalyst deactivation,” Environmental Science: Nano, vol. 6, no. 11, pp. 3185–3214, 2019.
[25] Y. Lu1, Y. Shao, R. Qu, C. Zheng, Y. Zhang, W. Lin, W. Wu, Y. Feng, and X. Gao, “Component Characteristics and Emission Factors of Volatile Organic Compounds from Dyestuff Production,” Aerosol and Air Quality Research, vol. 20, no. 1, pp. 108–118, 2020.
[26] C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, “Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources,” Chemical Reviews, vol. 119, no. 7, pp. 4471–4568, 2019.
[27] Y. Yang, H. Luo, R. Liu, G. Li, Y. Yu, and T. An, “The exposure risk of typical VOCs to the human beings via inhalation based on the respiratory deposition rates by proton transfer reaction-time of flight-mass spectrometer,” Ecotoxicology and Environmental Safety, vol. 197, 2020.
[28] B. Huang, C. Lei, C. Wei, and G. Zeng, “Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies,” Environment International, vol. 71, pp. 118–138, 2014.
[29] F. F. Liu, C. Peng, and J. C. Ng, “BTEX in vitro exposure tool using human lung cells: Trips and gains,” Chemosphere, vol. 128, pp. 321–326, 2015.
[30] 林文川,「製程 VOCs 廢氣之收集與處理」,工業汙染防治,第110期,pp. 105–173,2009。
[31] 游振偉,「化學材料製造業汙染防制法規與處理技術手冊」,經濟部工業局,2019。
[32] 楊奇儒,「臭味物質控制技術介紹」,化工雜誌,第75期,1999。
[33] 游振偉,「印刷電路板業汙染防治法規與處理操作手冊」,經濟部工業局,2014。
[34] 徐明倫,「揮發性有機物廢氣減量及處理技術手冊」,經濟部工業局,2007。
[35] 游振偉,「紙漿、紙及紙製品製造業汙染防制法規與處理技術手冊」,經濟部工業局,2014。
[36] 游振偉,「食品製造業汙染物防治法與處理技術手冊」,經濟部工業局,2014。
[37] 郭益銘、陳偉昇、張卿因、羅逸文、蔡政賢,「以 O3/UV/觸媒/洗滌塔處理二甲苯廢氣之研究」,工程科技與教育學刊,第1期,pp. 17–25,2009。
[38] 陳志傑,「小型靜電集塵器之過濾及負載特性之研究」,博士論文,國立台灣大學公共衛生學院職業醫學與工業衛生研究所,2001。
[39] 羅玉雲,「以靜電集塵裝置及濾袋室集塵裝置處理紙錢焚燒排氣之研究」,碩士論文,國立中山大學環境工程研究所,2005。
[40] 林雍傑,「一個二階靜電集塵器的PM2.5油煙去除效率的實驗及理論研究」,碩士論文,國立交通大學環境工程研究所,2016。
[41] 蘇建霖,「尖端冠狀電極應用於靜電集塵器之特性」,碩士論文,國立台灣科技大學機械工程系研究所,2008。
[42] S. Futamura, T. Yamamoto, and P. A. Lawless, “Towards understanding of VOC decomposition mechanisms using nonthermal plasmas,” IEEE Industry Applications Society, vol. 2, pp. 1453–1458, 1995.
[43] H. T. Q. An, T. P. Huu, T. l. Van, J. M. Cormier, and A. Khacef, “Application of atmospheric non thermal plasma-catalysis hybrid system for air pollution control: Toluene removal,” Catalysis Today, vol. 176, no. 1, pp. 474–477, 2011.
[44] J. Šimončicová, S. Kryštofová, V. Medvecká, K. Ďurišová, and B. Kaliňáková, “Technical applications of plasma treatments: current state and perspectives,” Applied Microbiology and Biotechnology, vol. 103, no. 13, pp. 5117–5129, 2019.
[45] O. Karatum and M. A. Deshusses, “A comparative study of dilute VOCs treatment in a non-thermal plasma reactor,” Chemical Engineering Journal, vol. 294, pp. 308–315, 2016.
[46] Z. Xiao, D. Xu, C. Hao, J. Qiu, and K. Liu, “High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor,” Plasma Science and Technology, vol. 19, no. 6, 2017.
[47] P. Attri, B. Arora, and E. H. Choi, “Utility of plasma: A new road from physics to chemistry,” RSC Advances, vol. 3, no. 31, pp. 12540–12567, 2013.
[48] H. Huang, D. Ye, D. Y. C. Leung, F. Feng, and X. Guan, “Byproducts and pathways of toluene destruction via plasma-catalysis,” Journal of Molecular Catalysis A: Chemical, vol. 336, no. 1–2, pp. 87–93, 2011.
[49] V. Nehra, A. Kumar, and H. K. Dwivedi, “Atmospheric Non-Thermal Plasma Sources,” Engineering, vol. 2, no. 1, pp. 53–68, 2012.
[50] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: A review,” Spectrochimica Acta - Part B Atomic Spectroscopy, vol. 61, no. 1, pp. 2–30, 2006.
[51] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Second Edi, John Wiley and Sons, 2016.
[52] M. F. Mustafa, X. Fu, Y. Liu, Y. Abbas, H. Wang, and W. Lu, “Volatile organic compounds (VOCs) removal in non-thermal plasma double dielectric barrier discharge reactor,” Journal of Hazardous Materials, vol. 347, pp. 317–324, 2018.
[53] B. Annemie, E. Neyts, R. Gijbels, and J. V Mullen, “Gas Discharge Plasmas and Their Applications, Spectrochimica Acta Part B 57,” Spectrochimica Acta Part B, vol. 57, pp. 609–658, 2002.
[54] 鍾宛庭,「電漿功率效應於SKD11工具鋼之常壓電漿噴射束表面硬化處理」,碩士論文,國立臺灣科技大學機械工程系研究所,2019。
[55] 郭福升,「大面積常壓電漿技術之研究」,碩士論文,國立成功大學化學系研究所,2003。
[56] J. R. Roth, “Industrial Plasma Engineering,” Bristol and Philedelphia: Instute of Physics, 1995.
[57] E. B. Sozer, “Gaseous discharges and their applications as high power plasma switches for compact pulsed power systems,” Master of Science, Hacettepe University, 2008.
[58] 簡士傑,「大氣電漿束之電漿特性與應用之研究」,碩士論文,國立清華大學物理學系研究所,2013。
[59] 何政昌,「常壓電漿技術之研究」,碩士論文,國立成功大學化學工程系研究所,2013。
[60] J. Peran and S. E Ražić, “Application of atmospheric pressure plasma technology for textile surface modification,” Textile Research Journal, vol. 90, no. 9–10, pp. 1174–1197, 2020.
[61] P. Verner, “Photoionization detection and its application in gas chromatography,” Journal of Chromatography A, vol. 300, pp. 249–264, 1984.
[62] 李灝銘,「以低溫電漿去除揮發性有機物之研究」,博士論文,國立中央大學環境工程系研究所,2002。
[63] Y. Guo, X. Liao, M. Fu, H. Huang, and D. Ye, “Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process,” Journal of Environmental Sciences, vol. 28, pp. 187–194, 2015.
[64] E. A. H. Timmermansa, J. Jonkersa, I. A .J. Thomasa, A. Roderob, M.C. Quinterob, A. Solab, A. Gamerob, J. A. M. V. Mullena, “The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 1. Plasmas at atmospheric pressure,” Spectrochimica acta, Part B: Atomic spectroscopy, vol. 53, no. 11, pp. 1553–1566, 1998.
[65] H. Kohno, A. A. Berezin, and J. S. Chang, “Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor,” IEEE Transactions on Industry Applications, vol. 34, no. 5, pp. 953–966, 1998.
[66] Y. Yang, J. Guo, X. Zhou, Z. Liu, C. Wang, K. Wang, J. Zhang, and Z. Wang, “A novel cold atmospheric pressure air plasma jet for peri-implantitis treatment: An in vitro study,” Dental Materials Journal, vol. 37, no. 1, pp. 157–166, 2018.
[67] W. C. Zhu, Q. Li, X. M. Zhu, and Y. K. Pu, “Characteristics of atmospheric pressure plasma jets emerging into ambient air and helium,” Journal of PhysFics D: Applied Physics, vol. 42, no. 20, pp. 6–10, 2009.
[68] B. Kuzflakowska-Pawlak and W. Zyrnicki, “Characterization of a d.c. titanium tetraisopropoxide/ H2 N2 plasma using emission spectroscopy,” Thin Solid Films, vol. 266, no. 1, pp. 8–13, 1995.
[69] B.-O. Cho, S. Lao, L. Sha, and J. P. Chang, “Spectroscopic study of plasma using zirconium tetra-tert-butoxide for the plasma enhanced chemical vapor deposition of zirconium oxide,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 19, no. 6, p. 2751, 2001.
[70] R. L. V. Wal, C. K. Gaddam, and M. J. Kulis, “Spectroscopic characterization and comparison between biologics, organics and mineral compounds using pulsed micro-hollow glow discharge,” Journal of Analytical Atomic Spectrometry, vol. 29, no. 10, pp. 1791–1798, 2014.
[71] J. Luque, W. Juchmann, E. A. Brinkman, and J. B. Jeffries, “Excited state density distributions of H, C, C2, and CH by spatially resolved optical emission in a diamond depositing dc-arcjet reactor,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, no. 2, pp. 397–408, 1998.
[72] J. R. Gilbert, W. P. Leach, and J. R. Miller, “Ionization and appearance potential measurements in arene chromium tricarbonyls,” Journal of Organometallic Chemistry,vol. 49, pp. 219–225, 1973.
[73] K. Urashima and J. S. Chang, “Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 7, no. 5, pp. 602–614, 2000.
[74] K. J. Clay, S. P. Speakman, G. A. J. Amaratunga, and S. R. P. Silva, “Characterization of a-C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy.” Journal of applied physics, vol. 79, no. 9, pp. 7227–7233, 1996.
[75] R. Diamant, E. Jimenez, E. Haro-Poniatowski, L. Ponce, M. Fernandez-Guasti, and J. C. Alonso, “Plasma dynamics inferred from optical emission spectra, during diamond-like thin film pulsed laser deposition,” Diamond and Related Materials, vol. 8, no. 7, pp. 1277–1284, 1999.
[76] Y. F. Guo, D. Q. Ye, K. F. Chen, J. C. He, and W. L. Chen, “Toluene decomposition using a wire-plate dielectric barrier discharge reactor with manganese oxide catalyst in situ,” Journal of Molecular Catalysis A: Chemical, vol. 245, no. 1–2, pp. 93–100, 2006.
[77] R. Huang, M. Lu, P. Wang, Y. Chen, J. Wu, M. Fu, L. Chen, and D. Ye, “Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal,” RSC Advances, vol. 5, no. 88, pp. 72113–72120, 2015.
[78] 王曉萍,「大氣電漿束之特性分析」,碩士論文,國立清華大學物理學系研究所,2005。
[79] 林哲蔚,「常壓電漿高聚能型噴射束製備奈米金顆粒之研究」,碩士論文,國立臺灣科技大學機械工程系研究所,2005。
[80] C. R. McLarnon, and B. M. Penetrante, “Effect of gas composition on the NOx conversion chemistry in a plasma,” SAE Technical Papers, vol. 107, pp. 886–897, 1998.
[81] J. V Durme, J. Dewulf, W. Sysmans, C. Leys, and H. V Langenhove, “Abatement and degradation pathways of toluene in indoor air by positive corona discharge,” Chemosphere, vol. 68, no. 10, pp. 1821–1829, 2007.
[82] J. T. Herron and D. S. Green, “Chemical kinetics database and predictive schemes for nonthermal humid air plasma chemistry. Part II. Neutral species reactions,” Plasma Chemistry and Plasma Processing, vol. 21, no. 3, pp. 459–481, 2001.
[83] A. G. Loudon, A. Maccoll, S. K. Wong, and R. F. Laboratories, “The Pyrolysis of p-Xylene,” Journal of Polymer Science, vol. 103, no. 5, pp. 7577–7580, 1969.
[84] M. Szwarc, “The C -H bond energy in toluene and xylenes,” The Journal of Chemical Physics, vol. 16, no. 2, pp. 128–136, 1948.
[85] N. Sewraj, N. Merbahi, J. P. Gardou, P. R. Akerreta, and F. Marchal, “Electric and spectroscopic analysis of a pure nitrogen mono-filamentary dielectric barrier discharge (MF-DBD) at 760 Torr,” Journal of Physics D: Applied Physics, vol. 44, no. 14, 2011.
[86] Z. L. Ye, Y. Shen, R. X. Zhang, and H. Q. Hou, “Destruction of benzene in an air stream by the outer combined plasma photolysis method,” Journal of Physics D: Applied Physics, vol. 41, no. 2, 2008.
[87] G. Xiao, W. Xu, R. Wu, M. Ni, C. Du, X. Gao, Z. Luo, and K. Cen, ”Non-thermal plasmas for VOCs abatement,” vol. 34, no. 5, pp. 1033–1065, 2014.
[88] A. M. Vandenbroucke, R. Morent, N. D. Geyter, and C. Leys, “Non-thermal plasmas for non-catalytic and catalytic VOC abatement,” Journal of Hazardous Materials, vol. 195, pp. 30–54, 2011.
[89] H. L. Bethel, R. Atkinson, and J. Arey, “Products of the gas-phase reactions of OH radicals with p-xylene and 1,2,3- and 1,2,4-trimethylbenzene: effect of NO2 concentration,” Journal of Physical Chemistry A, vol. 104, no. 39, pp. 8922–8929, 2000.

無法下載圖示 全文公開日期 2026/01/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE