簡易檢索 / 詳目顯示

研究生: 彭元鐸
Yuan-To Peng
論文名稱: 利用風機變數的短期風力多步預測
Short-term Wind Power Multi-Step Prediction using Wind Turbine Features
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 郭伯勳
Po-Hsun Kuo
王瑞堂
Jui-Tang Wang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 42
中文關鍵詞: 風力預測風機變數資料前處理長短期記憶模型誤差分析
外文關鍵詞: Wind Power Prediction, Turbine Features, Data Preprocessing, LSTM model, Error Analysis
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於環境危機和能源枯竭問題,人們著手於開發再生能源及相關技術來替代傳統的化石能源。風能作為最清潔的再生能源之一正受到世界矚目。風能需求在這十年中成倍增長,而且在短期內還會成長得更快。由於許多政府希望實現全球淨零能源目標,風力預測成為更好地管理智能電網中的這種間歇性能源並提高其穩定性和安全性的關鍵問題。
本研究結合多種資料前處理方法,提高原始數據集的完整性,構建用於短期多步風力預測的長短期記憶(LSTM)模型。此外,本研究使用兩個風機變數,轉子轉速和發電機繞組溫度,以更好地捕捉風力發電量的變化,從而獲得更準確的結果。
結果顯示,使用這兩個風機變數作為輸入變量確實有助於提高預測模型的性能。 誤差,MAPE 和 MAE 在不同的時間步預測中都有所下降。此外,本研究還分析了結果的誤差分佈,以確定數據集和模型的問題,以提出研究的未來展望。


Due to the environmental crisis and energy depletion, people are developing renewable energy and related technology to replace traditional fossil-based energy. As one of the cleanest renewable energy, wind power is catching the world’s attention. The wind energy demand is multiplying this decade and will be even faster shortly, especially since many governments want to reach the global net-zero energy goal. Therefore, wind power prediction becomes a critical issue in better managing this intermittent energy in the smart grid and improving its stability and safety.
This research focuses on combining several data pre-processing methods to improve the completeness of the original dataset and building a Long-Short Term Memory (LSTM) model for short-term multi-step wind power prediction. Moreover, This research uses two wind turbine features, Rotor RPM and Generator Winding Temperature, to better catch the change in wind power generation, thus getting a more accurate result.
As a result, the scenario which uses these two turbine features as input variables does help improve the prediction model performance. MAPE and MAE are all improved in different time step predictions. Furthermore, this research also analyses the error distribution of the result to identify the problems of the dataset and model to bring out possible future work.

ABSTRACT 2 ACKNOWLEDGMENT 3 CONTENTS 4 LIST OF FIGURES 6 LIST OF TABLES 7 LIST OF EQUATIONS 8 1. CHAPTER 1: INTRODUCTION 9 1.1. Background of Research 9 1.2. Limitation of Research 10 1.3. Objective of Research 10 1.4. Thesis Structure 10 2. CHAPTER 2: LITERATURE REVIEW 12 2.1. The trend of Wind Energy 12 2.2. Classification Standards of Wind Power Prediction 13 2.3. Power Formula of Wind & Wind Turbine 15 2.4. Wind Prediction Tasks & Solution 17 3. CHAPTER 3: METHODOLOGY 19 3.1. Data Description 19 3.1.1. Features Description 20 3.1.2. Feature Correlation Analysis 20 3.1.3. Feature Visualization 22 3.1.4. Wind Direction Distribution 23 3.1.5. 3D Visualization of WS-WD-PG 25 3.2. Data Preprocessing 26 3.3. Prediction Model 28 3.4. Error Indicators 30 4. CHAPTER 4: RESULT & ANALYSIS 32 4.1. Prediction Scenarios 32 4.2. Prediction Result 32 4.2.1. One-step Prediction Result 32 4.2.2. Multi-Step Prediction Result & Error Analysis 33 5. CHAPTER 5: CONCLUSION & FUTURE WORK 37 5.1. Conclusion 37 5.2. Future Work 37 REFERENCES 39

[1] Elavarasan, R. M., Shafiullah, G. M., Padmanaban, S., Kumar, N. M., Annam, A., Vetrichelvan, A. M., ... & Holm-Nielsen, J. B. (2020). A comprehensive review on renewable energy development, challenges, and policies of leading Indian states with an international perspective. IEEE Access, 8, 74432-74457.
[2] Qazi, A., Hussain, F., Rahim, N. A., Hardaker, G., Alghazzawi, D., Shaban, K., & Haruna, K. (2019). Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE access, 7, 63837-63851.
[3] Gaiceanu, M. (2022). Introductory Chapter: Towards 2050 NZE Pathway-Electric Transportation. New Perspectives on Electric Vehicles, 3.
[4] Akram, U., Mithulananthan, N., Raza, M. Q., Shah, R., & Milano, F. (2020). Rocof restrictive planning framework and wind speed forecast informed operation strategy of energy storage system. IEEE Transactions on Power Systems, 36(1), 224-234.
[5] Hanifi, S., Liu, X., Lin, Z., & Lotfian, S. (2020). A critical review of wind power forecasting methods—past, present and future. Energies, 13(15), 3764.
[6] Al‐Ghussain, L. (2019). Global warming: Review on driving forces and mitigation. Environmental Progress & Sustainable Energy, 38(1), 13-21.
[7] Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences, 116(15), 7192-7197.
[8] Olabi, A. G., & Abdelkareem, M. A. (2022). Renewable energy and climate change. Renewable and Sustainable Energy Reviews, 158, 112111.
[9] Nazir, M. S., Ali, N., Bilal, M., & Iqbal, H. M. (2020). Potential environmental impacts of wind energy development: A global perspective. Current Opinion in Environmental Science & Health, 13, 85-90.
[10] Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2020). GWEC: Over 60GW of wind energy capacity installed in 2019, the second-biggest year in history.
[11] Ahmed, S. D., Al-Ismail, F. S., Shafiullah, M., Al-Sulaiman, F. A., & El-Amin, I. M. (2020). Grid integration challenges of wind energy: A review. IEEE Access, 8, 10857-10878.
[12] He, X., Fang, X., & Yu, J. (2019). Distributed energy management strategy for reaching cost-driven optimal operation integrated with wind forecasting in multimicrogrids system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(8), 1643-1651.
[13] Wang, Y., Zou, R., Liu, F., Zhang, L., & Liu, Q. (2021). A review of wind speed and wind power forecasting with deep neural networks. Applied Energy, 304, 117766.
[14] Ding, Y., Singh, C., Goel, L., Østergaard, J., & Wang, P. (2014). Short-term and medium-term reliability evaluation for power systems with high penetration of wind power. IEEE Transactions on Sustainable Energy, 5(3), 896-906.
[15] Wang, J., Qin, S., Zhou, Q., & Jiang, H. (2015). Medium-term wind speeds forecasting utilizing hybrid models for three different sites in Xinjiang, China. Renewable Energy, 76, 91-101.
[16] Azad, H. B., Mekhilef, S., & Ganapathy, V. G. (2014). Long-term wind speed forecasting and general pattern recognition using neural networks. IEEE Transactions on Sustainable Energy, 5(2), 546-553.
[17] Hu, Q., Zhang, R., & Zhou, Y. (2016). Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, 85, 83-95.
[18] Chang, W. Y. (2014). A literature review of wind forecasting methods. Journal of Power and Energy Engineering, 2(04), 161.
[19] Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D., & Zareipour, H. (2020). Energy forecasting: A review and outlook. IEEE Open Access Journal of Power and Energy, 7, 376-388.
[20] Tong, W. (2010). Wind power generation and wind turbine design. WIT press.
[21] Foley, A. M., Leahy, P. G., Marvuglia, A., & McKeogh, E. J. (2012). Current methods and advances in forecasting of wind power generation. Renewable energy, 37(1), 1-8.
[22] Tian, C., Niu, T., & Wei, W. (2022). Developing a wind power forecasting system based on deep learning with attention mechanism. Energy, 124750.
[23] García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: methods and prospects. Big Data Analytics, 1(1), 1-22.
[24] Tian, C., Hao, Y., & Hu, J. (2018). A novel wind speed forecasting system based on hybrid data pre-processing and multi-objective optimization. Applied Energy, 231, 301-319.
[25] Lin, W. C., & Tsai, C. F. (2020). Missing value imputation: a review and analysis of the literature (2006–2017). Artificial Intelligence Review, 53(2), 1487-1509.
[26] Luo, Y., Cai, X., Zhang, Y., & Xu, J. (2018). Multivariate time series imputation with generative adversarial networks. Advances in neural information processing systems, 31.
[27] Raja, P. S., & Thangavel, K. J. S. C. (2020). Missing value imputation using unsupervised machine learning techniques. Soft Computing, 24(6), 4361-4392.
[28] Rahman, M. M., & Davis, D. N. (2013). Machine learning-based missing value imputation method for clinical datasets. In IAENG transactions on engineering technologies (pp. 245-257). Springer, Dordrecht.
[29] Chen, X., & Sun, L. (2021). Bayesian temporal factorization for multidimensional time series prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[30] Cleon W. (2020). How We Made Profits Forecasting Wind Energy
[31] Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21.
[32] Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270.
[33] Staudemeyer, R. C., & Morris, E. R. (2019). Understanding LSTM--a tutorial into long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586.
[34] Okumus, I., & Dinler, A. (2016). Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Conversion and Management, 123, 362-371.
[35] Nair, K. R., Vanitha, V., & Jisma, M. (2017, July). Forecasting of wind speed using ANN, ARIMA, and Hybrid models. In 2017 international conference on intelligent computing, instrumentation, and control technologies (ICICICT) (pp. 170-175). IEEE.

QR CODE