簡易檢索 / 詳目顯示

研究生: 周寶玉
IRENE KARIJADI
論文名稱: 透過混合深度學習和先進的數據預處理方法提高能源預測準確性
Improving Energy Forecast Accuracy through Hybrid Deep Learning and Advanced Data Preprocessing Methods
指導教授: 周碩彥
Shuo-Yan Chou
郭伯勳
Po-Hsun Kuo
口試委員: 游慧光
Hui-Kuang Yu
許聿靈
Yu-Ling Hsu
林詩偉
Shih-Wei Lin
陳振明
Jen-Ming Chen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 78
外文關鍵詞: data preprocessing, forecasting, deep learning, energy, artificial intelligence
相關次數: 點閱:51下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Energy forecasting is paramount in today's world, given the ever-increasing demand for energy across various sectors and its crucial role in daily life. This study explores the integration of machine learning and data decomposition techniques to enhance the accuracy of energy forecasting. While machine learning, particularly deep learning architectures such as Long Short-Term Memory (LSTM), has shown promise in time-series forecasting, real-world energy data often exhibits nonstationary and nonlinear patterns, challenging traditional forecasting methods. To address this, scholars have proposed hybrid approaches incorporating data decomposition techniques to mitigate the effects of non-stationarity and non-linearity. However, the highest frequency components resulting from decomposition remain challenging, leading to forecasting inaccuracies.

    Therefore, to address these limitations, this study introduces two novel hybrid approaches for energy forecasting, each tailored to specific energy applications. The first approach, CEEMDAN-RF-LSTM, focuses on enhancing the precision of predictions for building energy consumption. The second approach, CEEMDAN-EWT-LSTM, is designed for wind power forecasting. Both methods incorporate advanced data decomposition techniques to effectively handle the highest frequency components. These approaches offer a promising avenue for achieving more accurate and reliable energy forecasts, benefiting industries, investors, and governments in making informed decisions and planning for the future. The effectiveness of these proposed approaches is evaluated using actual time series datasets. Finally, the study concludes by discussing the advantages and potential future developments of deep learning and data preprocessing strategies in the context of time series forecasting for energy-related applications.

    ABSTRACT i ACKNOWLEDGEMENT ii TABLE OF CONTENTS iii LIST OF TABLES v LIST OF FIGURES vi CHAPTER 1 INTRODUCTION 7 1.1 Background 7 1.2 Research objective and contribution 11 1.3 Scope and limitations 11 1.4 Organization of thesis 12 CHAPTER 2 THEORETICAL BACKGROUND 13 2.1 CEEMDAN 13 2.2 Empirical Wavelet Transform (EWT) 14 2.3 Random Forest (RF) 15 2.4 Long Short-Term Memory (LSTM) 16 CHAPTER 3 BUILDING ENERGY CONSUMPTION FORECASTING 18 3.1 Introduction to Building Energy Consumption Forecasting 18 3.2 Building Energy Consumption Data 20 3.3 Framework of the Proposed Hybrid CEEMDAN-RF-LSTM Approach 22 3.4 Evaluation Metrics for Energy Building Forecasting 23 3.5 Experimental Setting for Energy Building Forecasting 23 3.6 Experimental Results for Energy Building Forecasting 24 3.7 Energy Building Forecasting Summary 30 CHAPTER 4 WIND POWER FORECASTING 31 4.1 Introduction to Wind Power Forecasting 31 4.2 Wind Power Dataset 34 4.3 Structure of the Proposed CEEMDAN-EWT-LSTM Approach 35 4.4 Experimental Setting Wind Power Forecasting 36 4.5 Evaluation Metrics Wind Power Forecasting 37 4.6 Experimental Results Wind Power Forecasting 37 4.7 Wind Power Forecasting Summary 46 CHAPTER 5 COMPARATIVE EVALUATION 47 5.1 Building Energy Consumption Dataset 47 5.2 Wind Power Dataset 53 5.3 Discussion 59 CHAPTER 6 CONCLUSION AND FUTURE RESEARCH 69 6.1 Conclusion 69 6.2 Future Research 70 REFERENCES 71

    [1] R. Bhandari, B.E. Arce, V. Sessa, R. Adamou, Sustainability assessment of electricity generation in Niger using a weighted multi-criteria decision approach, Sustainability (Switzerland) 13 (2021). https://doi.org/10.3390/su13010385.
    [2] P. Moodley, Sustainable biofuels: opportunities and challenges, Sustainable Biofuels (2021) 1–20. https://doi.org/10.1016/B978-0-12-820297-5.00003-7.
    [3] D. AL-Alimi, A.M. AlRassas, M.A.A. Al-qaness, Z. Cai, A.O. Aseeri, M. Abd Elaziz, A.A. Ewees, TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets, Appl Energy 343 (2023). https://doi.org/10.1016/j.apenergy.2023.121230.
    [4] A. Azarpour, O. Mohammadzadeh, N. Rezaei, S. Zendehboudi, Current status and future prospects of renewable and sustainable energy in North America: Progress and challenges, Energy Convers Manag 269 (2022). https://doi.org/10.1016/j.enconman.2022.115945.
    [5] D. AL-Alimi, A.M. AlRassas, M.A.A. Al-qaness, Z. Cai, A.O. Aseeri, M. Abd Elaziz, A.A. Ewees, TLIA: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets, Appl Energy 343 (2023). https://doi.org/10.1016/j.apenergy.2023.121230.
    [6] D. Kaur, S.N. Islam, M.A. Mahmud, M.E. Haque, Z.Y. Dong, Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning, IET Generation, Transmission and Distribution 16 (2022). https://doi.org/10.1049/gtd2.12603.
    [7] M. Zekić-Sušac, S. Mitrović, A. Has, Machine learning based system for managing energy efficiency of public sector as an approach towards smart cities, Int J Inf Manage 58 (2021). https://doi.org/10.1016/j.ijinfomgt.2020.102074.
    [8] I. Karijadi, S.Y. Chou, A hybrid RF-LSTM based on CEEMDAN for improving the accuracy of building energy consumption prediction, Energy Build 259 (2022). https://doi.org/10.1016/j.enbuild.2022.111908.
    [9] O. Laib, M.T. Khadir, L. Mihaylova, Toward efficient energy systems based on natural gas consumption prediction with LSTM Recurrent Neural Networks, Energy 177 (2019). https://doi.org/10.1016/j.energy.2019.04.075.
    [10] M.A.A. Al-Qaness, M.A. Elaziz, A.A. Ewees, Oil Consumption Forecasting Using Optimized Adaptive Neuro-Fuzzy Inference System Based on Sine Cosine Algorithm, IEEE Access 6 (2018). https://doi.org/10.1109/ACCESS.2018.2879965.
    [11] Y. Wang, R. Zou, F. Liu, L. Zhang, Q. Liu, A review of wind speed and wind power forecasting with deep neural networks, Appl Energy 304 (2021). https://doi.org/10.1016/j.apenergy.2021.117766.
    [12] I. Karijadi, S.-Y. Chou, A. Dewabharata, Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method, Renew Energy 218 (2023) 119357. https://doi.org/10.1016/J.RENENE.2023.119357.
    [13] T.Y. Kim, S.B. Cho, Predicting residential energy consumption using CNN-LSTM neural networks, Energy 182 (2019). https://doi.org/10.1016/j.energy.2019.05.230.
    [14] X. Qing, Y. Niu, Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM, Energy 148 (2018). https://doi.org/10.1016/j.energy.2018.01.177.
    [15] N.T. Ngo, A.D. Pham, T.T.H. Truong, N.S. Truong, N.T. Huynh, Developing a hybrid time-series artificial intelligence model to forecast energy use in buildings, Sci Rep 12 (2022). https://doi.org/10.1038/s41598-022-19935-6.
    [16] C. Fu, M. Quintana, Z. Nagy, C. Miller, Filling time-series gaps using image techniques: Multidimensional context autoencoder approach for building energy data imputation, Appl Therm Eng 236 (2024) 121545. https://doi.org/10.1016/J.APPLTHERMALENG.2023.121545.
    [17] W. Khan, S. Walker, W. Zeiler, Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach, Energy 240 (2022). https://doi.org/10.1016/j.energy.2021.122812.
    [18] L. Wang, M. Mao, J. Xie, Z. Liao, H. Zhang, H. Li, Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model, Energy 262 (2023). https://doi.org/10.1016/j.energy.2022.125592.
    [19] Y. Song, C. Cai, D. Ma, C. Li, Modelling and Forecasting High-Frequency Data with Jumps Based on a Hybrid Nonparametric Regression and LSTM model, Expert Syst Appl (2023) 121527. https://doi.org/10.1016/J.ESWA.2023.121527.
    [20] X. Kong, X. Du, G. Xue, Z. Xu, Multi-step short-term solar radiation prediction based on empirical mode decomposition and gated recurrent unit optimized via an attention mechanism, Energy 282 (2023) 128825. https://doi.org/10.1016/J.ENERGY.2023.128825.
    [21] Z. Xing, B. Qu, Y. Liu, Z. Chen, Comparative study of reformed neural network based short-term wind power forecasting models, IET Renewable Power Generation 16 (2022). https://doi.org/10.1049/rpg2.12384.
    [22] Y. Ren, P.N. Suganthan, N. Srikanth, A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods, IEEE Trans Sustain Energy 6 (2015). https://doi.org/10.1109/TSTE.2014.2365580.
    [23] Q. Zhang, Z. Tang, S. Cao, G. Wang, Wind farm wind power prediction method based on CEEMDAN and de optimized DNN neural network, in: Proceedings - 2019 Chinese Automation Congress, CAC 2019, 2019. https://doi.org/10.1109/CAC48633.2019.8996744.
    [24] P. Lv, Y. Shu, J. Xu, Q. Wu, Modal decomposition-based hybrid model for stock index prediction, Expert Syst Appl 202 (2022) 117252. https://doi.org/10.1016/J.ESWA.2022.117252.
    [25] Y. Lin, Z. Lin, Y. Liao, Y. Li, J. Xu, Y. Yan, Forecasting the realized volatility of stock price index: A hybrid model integrating CEEMDAN and LSTM, Expert Syst Appl 206 (2022) 117736. https://doi.org/10.1016/J.ESWA.2022.117736.
    [26] W. Zeng, Y. Cao, L. Feng, J. Fan, M. Zhong, W. Mo, Z. Tan, Hybrid CEEMDAN-DBN-ELM for online DGA serials and transformer status forecasting, Electric Power Systems Research 217 (2023) 109176. https://doi.org/10.1016/J.EPSR.2023.109176.
    [27] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, N. Yen, C.C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proceedings of the Royal Society A 454 (1996).
    [28] L. Yang, J. Cai, A method to identify wet ball mill’s load based on CEEMDAN, RCMDE and SRNN classification, Miner Eng 165 (2021). https://doi.org/10.1016/j.mineng.2021.106852.
    [29] K. Barnova, R. Kahankova, R. Jaros, M. Litschmannova, R. Martinek, A comparative study of single-channel signal processing methods in fetal phonocardiography, PLoS One 17 (2022). https://doi.org/10.1371/journal.pone.0269884.
    [30] D.O. Afanasyev, E.A. Fedorova, The long-term trends on the electricity markets: Comparison of empirical mode and wavelet decompositions, Energy Econ 56 (2016). https://doi.org/10.1016/j.eneco.2016.04.009.
    [31] D. Shu-wen, L. Lu-jun, W. Qing-qu, W. Kang-le, C. Peng-zhan, Fiber optic gyro noise reduction based on hybrid CEEMDAN-LWT method, Measurement 161 (2020). https://doi.org/10.1016/j.measurement.2020.107865.
    [32] M.E. Torres, M.A. Colominas, G. Schlotthauer, P. Flandrin, A complete ensemble empirical mode decomposition with adaptive noise, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 2011. https://doi.org/10.1109/ICASSP.2011.5947265.
    [33] O. Singh, R.K. Sunkaria, An empirical wavelet transform based approach for multivariate data processing application to cardiovascular physiological signals, Bio-Algorithms and Med-Systems 14 (2018). https://doi.org/10.1515/bams-2018-0030.
    [34] W. Liu, W. Chen, Recent advancements in empirical wavelet transform and its applications, IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2930529.
    [35] Y. Xu, K. Zhang, C. Ma, Z. Sheng, H. Shen, An Adaptive Spectrum Segmentation Method to Optimize Empirical Wavelet Transform for Rolling Bearings Fault Diagnosis, IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2902645.
    [36] O. Singh, R.K. Sunkaria, ECG signal denoising via empirical wavelet transform, Australas Phys Eng Sci Med 40 (2017). https://doi.org/10.1007/s13246-016-0510-6.
    [37] J. Gilles, Empirical wavelet transform, IEEE Transactions on Signal Processing 61 (2013). https://doi.org/10.1109/TSP.2013.2265222.
    [38] L. Breiman, Random forests. Mach Learn, Random Forests (2001).
    [39] L. Lin, F. Wang, X. Xie, S. Zhong, Random forests-based extreme learning machine ensemble for multi-regime time series prediction, Expert Syst Appl 83 (2017). https://doi.org/10.1016/j.eswa.2017.04.013.
    [40] A. Liaw, M. Wiener, Classification and Regression by randomForest, R News 2 (2002).
    [41] Z.H. Zhou, J. Feng, Deep forest: Towards an alternative to deep neural networks, in: IJCAI International Joint Conference on Artificial Intelligence, 2017. https://doi.org/10.24963/ijcai.2017/497.
    [42] Y. Guo, S. Liu, Z. Li, X. Shang, BCDForest: A boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data, BMC Bioinformatics 19 (2018). https://doi.org/10.1186/s12859-018-2095-4.
    [43] R. Srivastava, A.N. Tiwari, V.K. Giri, Solar radiation forecasting using MARS, CART, M5, and random forest model: A case study for India, Heliyon 5 (2019). https://doi.org/10.1016/j.heliyon.2019.e02692.
    [44] T. Fischer, C. Krauss, Deep learning with long short-term memory networks for financial market predictions, Eur J Oper Res 270 (2018). https://doi.org/10.1016/j.ejor.2017.11.054.
    [45] J. Ren, Z. Yu, G. Gao, G. Yu, J. Yu, A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism, Energy Reports 8 (2022) 437–443. https://doi.org/10.1016/J.EGYR.2022.02.206.
    [46] D. Hládek, J. Staš, S. Ondáš, Comparison of Recurrent Neural Networks for Slovak Punctuation Restoration; Comparison of Recurrent Neural Networks for Slovak Punctuation Restoration, 2019. https://keras.io/.
    [47] L. Xiang, J. Liu, X. Yang, A. Hu, H. Su, Ultra-short term wind power prediction applying a novel model named SATCN-LSTM, Energy Convers Manag 252 (2022) 115036. https://doi.org/10.1016/J.ENCONMAN.2021.115036.
    [48] J. Wei, X. Wu, T. Yang, R. Jiao, Ultra-short-term forecasting of wind power based on multi-task learning and LSTM, International Journal of Electrical Power and Energy Systems 149 (2023). https://doi.org/10.1016/j.ijepes.2023.109073.
    [49] M. Santamouris, Energy Consumption and Environmental Quality of the Building Sector, in: Minimizing Energy Consumption, Energy Poverty and Global and Local Climate Change in the Built Environment: Innovating to Zero, 2019. https://doi.org/10.1016/b978-0-12-811417-9.00002-7.
    [50] REN21 Secretariat, 2020 Global Status Report for Buildings and Construction Towards a zero-emissions, efficient and resilient buildings owards a zero-emissions, efficient and resilient buildings and construction sector, 2020.
    [51] A. Kalua, Urban residential building energy consumption by end-use in Malawi, Buildings 10 (2020). https://doi.org/10.3390/buildings10020031.
    [52] Y. Ye, W. Zuo, G. Wang, A comprehensive review of energy-related data for U.S. commercial buildings, Energy Build 186 (2019). https://doi.org/10.1016/j.enbuild.2019.01.020.
    [53] K. Amasyali, N.M. El-Gohary, A review of data-driven building energy consumption prediction studies, Renewable and Sustainable Energy Reviews 81 (2018). https://doi.org/10.1016/j.rser.2017.04.095.
    [54] BP, BP Energy Outlook 2019 edition, 2019.
    [55] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build 40 (2008). https://doi.org/10.1016/j.enbuild.2007.03.007.
    [56] M. Ilbeigi, M. Ghomeishi, A. Dehghanbanadaki, Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm, Sustain Cities Soc 61 (2020). https://doi.org/10.1016/j.scs.2020.102325.
    [57] F. Pallonetto, C. Jin, E. Mangina, Forecast electricity demand in commercial building with machine learning models to enable demand response programs, Energy and AI (2021). https://doi.org/10.1016/j.egyai.2021.100121.
    [58] C. Kuster, Y. Rezgui, M. Mourshed, Electrical load forecasting models: A critical systematic review, Sustain Cities Soc 35 (2017). https://doi.org/10.1016/j.scs.2017.08.009.
    [59] C. Liu, B. Sun, C. Zhang, F. Li, A hybrid prediction model for residential electricity consumption using holt-winters and extreme learning machine, Appl Energy 275 (2020). https://doi.org/10.1016/j.apenergy.2020.115383.
    [60] T. Catalina, V. Iordache, B. Caracaleanu, Multiple regression model for fast prediction of the heating energy demand, Energy Build 57 (2013). https://doi.org/10.1016/j.enbuild.2012.11.010.
    [61] Z. Wang, Y. Wang, R. Zeng, R.S. Srinivasan, S. Ahrentzen, Random Forest based hourly building energy prediction, Energy Build 171 (2018). https://doi.org/10.1016/j.enbuild.2018.04.008.
    [62] A. Lahouar, J. Ben Hadj Slama, Day-ahead load forecast using random forest and expert input selection, Energy Convers Manag 103 (2015). https://doi.org/10.1016/j.enconman.2015.07.041.
    [63] D. Liu, Q. Yang, F. Yang, Predicting Building Energy Consumption by Time Series Model Based on Machine Learning and Empirical Mode Decomposition, in: 2020 5th IEEE International Conference on Big Data Analytics, ICBDA 2020, 2020. https://doi.org/10.1109/ICBDA49040.2020.9101335.
    [64] H. Zheng, J. Yuan, L. Chen, Short-Term Load Forecasting Using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation, Energies (Basel) 10 (2017). https://doi.org/10.3390/en10081168.
    [65] N. An, W. Zhao, J. Wang, D. Shang, E. Zhao, Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting, Energy 49 (2013). https://doi.org/10.1016/j.energy.2012.10.035.
    [66] D. Zhang, C. Cai, S. Chen, L. Ling, An improved genetic algorithm for optimizing ensemble empirical mode decomposition method, Systems Science and Control Engineering 7 (2019). https://doi.org/10.1080/21642583.2019.1627598.
    [67] Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: A noise-assisted data analysis method, Adv Adapt Data Anal 1 (2009). https://doi.org/10.1142/S1793536909000047.
    [68] J. Zheng, J. Cheng, Y. Yang, Partly ensemble empirical mode decomposition: An improved noise-assisted method for eliminating mode mixing, Signal Processing 96 (2014). https://doi.org/10.1016/j.sigpro.2013.09.013.
    [69] H. Lin, Q. Sun, S.Q. Chen, Reducing exchange rate risks in international trade: A hybrid forecasting approach of CEEMDAN and multilayer LSTM, Sustainability (Switzerland) 12 (2020). https://doi.org/10.3390/su12062451.
    [70] C. Miller, F. Meggers, The Building Data Genome Project: An open, public data set from non-residential building electrical meters, in: Energy Procedia, 2017. https://doi.org/10.1016/j.egypro.2017.07.400.
    [71] M. Zekić-Sušac, A. Has, M. Knežević, Predicting energy cost of public buildings by artificial neural networks, CART, and random forest, Neurocomputing 439 (2021). https://doi.org/10.1016/j.neucom.2020.01.124.
    [72] J. Xu, K. Xu, Z. Li, F. Meng, T. Tu, L. Xu, Q. Liu, Forecast of dengue cases in 20 chinese cities based on the deep learning method, Int J Environ Res Public Health 17 (2020). https://doi.org/10.3390/ijerph17020453.
    [73] S.L. Lin, H.W. Huang, Improving Deep Learning for Forecasting Accuracy in Financial Data, Discrete Dyn Nat Soc 2020 (2020). https://doi.org/10.1155/2020/5803407.
    [74] N. Halpern-Wight, M. Konstantinou, A.G. Charalambides, A. Reinders, Training and testing of a single-layer LSTM network for near-future solar forecasting, Applied Sciences (Switzerland) 10 (2020). https://doi.org/10.3390/app10175873.
    [75] D. Laszuk, PyEMD Documentation, (2020).
    [76] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12 (2011).
    [77] F. Chollet, Keras Documentation, Keras.Io (2015).
    [78] A. Lahouar, J. Ben Hadj Slama, Hour-ahead wind power forecast based on random forests, Renew Energy 109 (2017). https://doi.org/10.1016/j.renene.2017.03.064.
    [79] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015.
    [80] A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, K. Kanhaiya, Study and analysis of SARIMA and LSTM in forecasting time series data, Sustainable Energy Technologies and Assessments 47 (2021). https://doi.org/10.1016/j.seta.2021.101474.
    [81] A. Kara, Multi-step influenza outbreak forecasting using deep LSTM network and genetic algorithm, Expert Syst Appl 180 (2021). https://doi.org/10.1016/j.eswa.2021.115153.
    [82] C. Jörges, C. Berkenbrink, B. Stumpe, Prediction and reconstruction of ocean wave heights based on bathymetric data using LSTM neural networks, Ocean Engineering 232 (2021). https://doi.org/10.1016/j.oceaneng.2021.109046.
    [83] I. Kandel, M. Castelli, The effect of batch size on the generalizability of the convolutional neural networks on a histopathology dataset, ICT Express 6 (2020). https://doi.org/10.1016/j.icte.2020.04.010.
    [84] Y. Wang, J. Wang, Z. Li, A novel hybrid air quality early-warning system based on phase-space reconstruction and multi-objective optimization: A case study in China, J Clean Prod 260 (2020). https://doi.org/10.1016/j.jclepro.2020.121027.
    [85] I.M. Coelho, V.N. Coelho, E.J. da S. Luz, L.S. Ochi, F.G. Guimarães, E. Rios, A GPU deep learning metaheuristic based model for time series forecasting, Appl Energy 201 (2017). https://doi.org/10.1016/j.apenergy.2017.01.003.
    [86] I.E.A. IEA, Electricity Market Report, Electricity Market Report (2022).
    [87] M.D.A. Al-falahi, S.D.G. Jayasinghe, H. Enshaei, A review on recent size optimization methodologies for standalone solar and wind hybrid renewable energy system, Energy Convers Manag 143 (2017). https://doi.org/10.1016/j.enconman.2017.04.019.
    [88] A. Suman, Role of renewable energy technologies in climate change adaptation and mitigation: A brief review from Nepal, Renewable and Sustainable Energy Reviews 151 (2021). https://doi.org/10.1016/j.rser.2021.111524.
    [89] R. Lacal Arantegui, A. Jäger-Waldau, Photovoltaics and wind status in the European Union after the Paris Agreement, Renewable and Sustainable Energy Reviews 81 (2018). https://doi.org/10.1016/j.rser.2017.06.052.
    [90] J. Li, S. Zhang, Z. Yang, A wind power forecasting method based on optimized decomposition prediction and error correction, Electric Power Systems Research 208 (2022). https://doi.org/10.1016/j.epsr.2022.107886.
    [91] S. Teleke, M.E. Baran, S. Bhattacharya, A.Q. Huang, Optimal control of battery energy storage for wind farm dispatching, IEEE Transactions on Energy Conversion 25 (2010). https://doi.org/10.1109/TEC.2010.2041550.
    [92] J. Wang, M. Shahidehpour, Z. Li, Security-constrained unit commitment with volatile wind power generation, IEEE Transactions on Power Systems 23 (2008). https://doi.org/10.1109/TPWRS.2008.926719.
    [93] Q. Chen, K.A. Folly, Wind Power Forecasting, IFAC-PapersOnLine 51 (2018). https://doi.org/10.1016/j.ifacol.2018.11.738.
    [94] S.S. Soman, H. Zareipour, O. Malik, P. Mandal, A review of wind power and wind speed forecasting methods with different time horizons, in: North American Power Symposium 2010, NAPS 2010, 2010. https://doi.org/10.1109/NAPS.2010.5619586.
    [95] G. Mu, M. Yang, D. Wang, G. Yan, Y. Qi, Spatial dispersion of wind speeds and its influence on the forecasting error of wind power in a wind farm, Journal of Modern Power Systems and Clean Energy 4 (2016). https://doi.org/10.1007/s40565-015-0151-x.
    [96] Z. Peng, S. Peng, L. Fu, B. Lu, J. Tang, K. Wang, W. Li, A novel deep learning ensemble model with data denoising for short-term wind speed forecasting, Energy Convers Manag 207 (2020). https://doi.org/10.1016/j.enconman.2020.112524.
    [97] Z.-W. Zheng, Y.-Y. Chen, X.-W. Zhou, M.-M. Huo, B. Zhao, M.-Y. Guo, Short-Term Wind Power Forecasting Using Empirical Mode Decomposition and RBFNN, International Journal of Smart Grid and Clean Energy 2 (2013) 192–199. https://doi.org/10.12720/sgce.2.2.192-199.
    [98] J. Wang, W. Zhang, Y. Li, J. Wang, Z. Dang, Forecasting wind speed using empirical mode decomposition and Elman neural network, Applied Soft Computing Journal 23 (2014). https://doi.org/10.1016/j.asoc.2014.06.027.
    [99] Y. He, Y. Wang, Short-term wind power prediction based on EEMD–LASSO–QRNN model, Appl Soft Comput 105 (2021). https://doi.org/10.1016/j.asoc.2021.107288.
    [100] Y. Ding, Z. Chen, H. Zhang, X. Wang, Y. Guo, A short-term wind power prediction model based on CEEMD and WOA-KELM, Renew Energy 189 (2022). https://doi.org/10.1016/j.renene.2022.02.108.
    [101] W. Hu, Y. He, Z. Liu, J. Tan, M. Yang, J. Chen, Toward a digital twin: Time series prediction based on a hybrid ensemble empirical mode decomposition and BO-LSTM neural networks, Journal of Mechanical Design, Transactions of the ASME 143 (2021). https://doi.org/10.1115/1.4048414.
    [102] Y. Zhang, Y. Chen, Application of hybrid model based on CEEMDAN, SVD, PSO to wind energy prediction, Environmental Science and Pollution Research 29 (2022). https://doi.org/10.1007/s11356-021-16997-3.
    [103] Y. Song, S. Zeng, J. Ma, J. Guo, A fault diagnosis method for roller bearing based on empirical wavelet transform decomposition with adaptive empirical mode segmentation, Measurement (Lond) 117 (2018). https://doi.org/10.1016/j.measurement.2017.12.029.
    [104] W. Liu, S. Cao, Y. Chen, Seismic time-frequency analysis via empirical wavelet transform, IEEE Geoscience and Remote Sensing Letters 13 (2016). https://doi.org/10.1109/LGRS.2015.2493198.
    [105] J. Hu, J. Wang, K. Ma, A hybrid technique for short-term wind speed prediction, Energy 81 (2015). https://doi.org/10.1016/j.energy.2014.12.074.
    [106] J. Hu, J. Wang, Short-term wind speed prediction using empirical wavelet transform and Gaussian process regression, Energy 93 (2015). https://doi.org/10.1016/j.energy.2015.10.041.
    [107] J. Hu, J. Wang, L. Xiao, A hybrid approach based on the Gaussian process with t-observation model for short-term wind speed forecasts, Renew Energy 114 (2017). https://doi.org/10.1016/j.renene.2017.05.093.
    [108] R. Mandzhieva, R. Subhankulova, Data-driven applications for wind energy analysis and prediction: The case of “La Haute Borne” wind farm, Digital Chemical Engineering 4 (2022). https://doi.org/10.1016/j.dche.2022.100048.
    [109] Y. Li, Y. Li, X. Chen, J. Yu, H. Yang, L. Wang, A new underwater acoustic signal denoising technique based on CEEMDAN, mutual information, permutation entropy, and wavelet threshold denoising, Entropy 20 (2018). https://doi.org/10.3390/e20080563.
    [110] M. Sun, Q. Li, P. Lin, Short-Term Stock Price Forecasting Based on an SVD-LSTM Model, Intelligent Automation & Soft Computing 28 (2021). https://doi.org/10.32604/iasc.2021.014962.
    [111] Y. Shi, L. Zhang, S. Lu, Q. Liu, Short-Term Demand Prediction of Shared Bikes Based on LSTM Network, Electronics (Basel) 12 (2023). https://doi.org/10.3390/electronics12061381.
    [112] Y. He, Y. Wang, Short-term wind power prediction based on EEMD–LASSO–QRNN model, Appl Soft Comput 105 (2021). https://doi.org/10.1016/j.asoc.2021.107288.
    [113] H. Liu, C. Yu, H. Wu, Z. Duan, G. Yan, A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting, Energy 202 (2020). https://doi.org/10.1016/j.energy.2020.117794.
    [114] J. Tong, L. Xie, S. Fang, W. Yang, K. Zhang, Hourly solar irradiance forecasting based on encoder–decoder model using series decomposition and dynamic error compensation, Energy Convers Manag 270 (2022). https://doi.org/10.1016/j.enconman.2022.116049.
    [115] S. Karim, A. Faissal, E.B. Noureddine, National Renewable Energy Laboratory, in: Handbook of Algal Biofuels, 2022. https://doi.org/10.1016/b978-0-12-823764-9.00006-6.

    QR CODE