簡易檢索 / 詳目顯示

研究生: 楊麗雲
Jindrayani Nyoo Putro
論文名稱: 表面活性劑改質多醣納米粒子用於疏水性藥物的加載和釋放
Surfactant modified polysaccharide nanoparticles for hydrophobic drug loading and release
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 朱義旭
李振綱
王孟菊
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 76
中文關鍵詞: 納米晶體纖維素澱粉多醣表面活性劑紫杉醇給藥
外文關鍵詞: nanocrystalline cellulose, starch, polysaccharide, surfactant, paclitaxel, drug delivery
相關次數: 點閱:199下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

納米晶纖維素(NCC)由濾紙經由水解法製備而得。從XRD和FTIR的結果可知,用陽離子、陰離子和非離子表面活性劑改質後的NCC其化學結構沒有顯著變化。將修飾的NCC用做疏水性紫杉醇(PTX)的藥物載體。增加離子表面活性劑的濃度可增強疏水性藥物的負載,而非離子表面活性劑修飾的納米晶體則有相反的趨勢。表面活性劑與顆粒的附著很可能是納米晶體表面膠束的物理聚集。NCC改質後粒徑變大。應用Higuchi和Sigmoidal模式來代表紫杉醇在pH 5.8和7.4下的釋放數據以探討其動力學釋放機制。使用MTT測定來檢視NCC對小鼠成骨細胞7F2的生物相容性。 NCC對該細胞無毒性,而CTAB修飾之NCC與細胞完全不相容。
使用酸水解和沈澱方法由天然馬鈴薯澱粉製備澱粉納米顆粒(SNP)。酸水解法產生高相對結晶度之澱粉納米粒子(SNP-H),而乙醇沉澱法產生具有低結晶度的納米粒子(SNP-P),其在繞射圖中顯示出寬峰。 SNP-P具有比SNP-H更高的載藥量。SNP-H在pH 5.8和7.4對PTX有持續的釋放機制。簡單的S形函數和Higuchi模型用以代表PTX從SNP之動力學釋放曲線。細胞毒性測定顯示SNP與7F2細胞有良好生物相容性。
在PTX裝載和釋放過程中探討了Triton X-100和皂苷(一種從無患子中提取的天然表面活性劑)對NCC和SNP改質的影響。結晶度指數結果顯示,水解法合成之納米粒子,相對結晶度無變化。 FTIR和X射線繞射結果顯示,在兩種表面活性劑改性後分子結構的改變不明顯。對所有改質SNP而言,初始藥物濃度增加時,藥物負載效率降低。使用Triton X-100的修飾的SNP有最佳負載(LE ~ 40%),而皂苷改質的NCC可得LE ~ 70%。增加表面活性劑的濃度對於藥物負載沒有影響。使用Higuchi,Korsmeyer Peppas和Sigmoidal模型來代表藥物釋放數據以了解釋放機制。所有改質納米粒子在30分鐘內顯示爆發釋放且累積釋放高於50%;實驗數據遵循Fickian擴散,使用Korsmeyer Peppas和Sigmoidal函數具有較好的相關參數(R2 = 0.99)。MTT測定顯示經皂苷修飾的納米顆粒其毒性低於經Triton X-100修飾的納米顆粒,細胞活力約為45-53%。


Nanocrystalline cellulose (NCC) was prepared from filter paper by acid hydrolysis process. Starch nanoparticles were prepared from native potato starch using acid hydrolysis and precipitation methods. Acid hydrolysis of potato starch yielded starch nanoparticles (SNP) with high relative crystallinity (SNP-H), while ethanol precipitation of potato starch resulted in nanoparticles with low crystallinity (SNP-P), which showed a broad peak in diffractogram. The modification of NCC and SNP-H with cationic, anionic, and nonionic surfactant did not significantly effect its chemical structure based on the characterization of XRD and FTIR. The modification of NCC and SNP by saponin, a natural surfactant extracted from Sapindus rarak and Triton X-100 on the effects of PTX loading and release were investigated. The modified polysaccharides nanoparticles were employed as drug carrier for hydrophobic paclitaxel (PTX). Loading of PTX increased with increasing concentration of ionic surfactants, while the opposite trend was observed for nonionic surfactant modified nanoparticles. The attachment of surfactant was more likely the physical aggregation of micelle on nanoparticle surface. Larger particle size was observed after surfactant modification. Higuchi and sigmoidal models were applied in fitting the release profile at pH 5.8 and 7.4 to investigate the kinetic release mechanism of paclitaxel. All modified Triton X-100 and saponin nanoparticles showed burst release at 30 min with cumulative release higher than 50%; the fitting results signified that experimental data follow the Fickian diffusion, with better correlation parameters using Korsmeyer Peppas and Sigmoidal function (R2 = 0.99). Cell viability test was employed to check the biocompatibility of original and modified NCC, SNP-H and SNP-P toward mouse osteoblast cells 7F2 using MTT assay. Original nanoparticles were not toxic towards the cells, while CTAB and Triton X-100 modified nanoparticles was completely noncompatible with the cells. While saponin modified nanoparticles was less toxic than Triton X-100, with cell viabilities around 45-53%.

Recommendation Letter……………………………………………………………. ...ii Qualification Letter………………………………………………………………… ..iii 摘要 iv Abstract v Acknowledgements vi Table of Contents vii List of figures viii List of tables x Chapter 1. Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2. Literature Review 3 2.1 Polysaccharide nanoparticle (cellulose and starch) 3 2.2 Anticancer drug: Paclitaxel (PTX) 7 2.3 Surfactant 10 Chapter 3. Experimental 14 3.1 Materials 14 3.1.1 Extraction of saponin 14 3.2 Preparation and modification of starch and cellulose nanoparticles 15 3.3 Drug loading and release 15 3.4 In vitro cell cytotoxicity 17 3.5 Characterization of nanoparticles 17 Chapter 4. Results and Discussion 18 4.1 Characteristics of nanoparticles 18 4.2 The effect of surfactants on Paclitaxel loading 29 4.3 In vitro drug release and fitting model 38 4.4 Cell cytotoxicity via MTT assay 48 Chapter 5. Conclusions 53 References 54

1. Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering †. Polym Adv Technol. 2014;25:448–60.
2. Lapasin R, Pricl S. Rheology of Industrial Polysaccharides : Theory and Applications. United Kingdom: Springer Science+Business Media Dordrecht; 1995. 134–156 p.
3. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62. doi:10.1016/j.addr.2008.09.001
4. Jones GB. History of Anticancer Drugs. In: Encyclopedia of Life Sciences. John Wiley & Sons Ltd; 2002.
5. Strobel GA. Taxol. In: Encyclopedia of Life Sciences. John Wiley & Sons Ltd; 2002.
6. Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for Poorly Water-Soluble Anticancer Drugs—Barriers of Translation and Solutions. AAPS PharmSciTech. 2014;15(4):822–33. doi:10.1208/s12249-014-0107-x
7. Ishikawa S, Matsumura Y, Katoh-Kubo K, Tsuchido T. Antibacterial activity of surfactants against Escherichia coli cells is influenced by carbon source and anaerobiosis. J Appl Microbiol. 2002;93(2):302–9.
8. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym. 2017;163:261–9. doi:10.1016/j.carbpol.2017.01.036
9. Ioelovich M. Cellulose as a nanostructured polymer: A short review. BioResources. 2008;3(4):1403–18.
10. Moon RJ, Martini A, Nairn J, Youngblood J, Martini A, Nairn J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94.
11. Lam E, Male KB, Chong JH, Leung ACW, Luong JHT. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol. 2012;30(5):283–90. doi:10.1016/j.tibtech.2012.02.001
12. Dufresne A. Crystalline starch based nanoparticles. Curr Opin Colloid Interface Sci. 2014;19(5):397–408. doi:10.1016/j.cocis.2014.06.001
13. Gallant DJ, Bouchet B, Baldwin PM. Microscopy of starch : evidence of a new level of granule organization. Carbohydr Polym. 1997;32(97):177–91.
14. Moore CO, Tuschhoff J V, Hastings CW, Schanefelt R V. Applications of starches in foods. In: Whistler RL, Bemiller JN, Paschall EF, editors. Starch: Chemistry and Technology. Second edi. Academic Press; 1984. p. 575–90.
15. Jane J. Starch Properties, Modifications, and Applications. J Mol Sci Part A Pure Appl Chem. 1995;32(4):751–7.
16. Le Corre D, Angellier-Coussy H. Preparation and application of starch nanoparticles for nanocomposites: A review. React Funct Polym. 2014;85:97–120.
17. van Soest JJG, Hulleman SH., de Wit D, Vliegenthart JFG. Crystallinity in starch bioplastics. Ind Crops Prod. 1996;5:11–22.
18. Rånby BG, Ribi E. Über den Feinbau der Zellulose. Experientia. 1950;6(1):12–4.
19. Nageli CW. Beitriige zur niiheren Kenutnifs der Stiirke-. Ann Chem. 1874;173:218–27.
20. Kirchoff GSC. Mémoires de l’Académie impériale des sciences de St.-Pétersbourg: Ve série, Volume 4. 1811. 27 p.
21. Corre D Le, Bras J, Dufresne A. Starch Nanoparticles: A Review. Biomacromolecules. 2010;11:1139–53.
22. Lintner CJ. Studien über Diastase. J Prakt Chem. 1886;34:378–86.
23. Putaux J, Molina-boisseau S, Momaur T, Dufresne A. Platelet Nanocrystals Resulting from the Disruption of Waxy Maize Starch Granules by Acid Hydrolysis. Biomacromolecules. 2003;4:1198–202.
24. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules. 2004;5(4):1545–51.
25. Ma X, Jian R, Chang PR, Yu J. Fabrication and Characterization of Citric Acid-Modified Starch Nanoparticles/Plasticized-Starch Composites. Biomacromolecules. 2008 Nov 10;9(11):3314–20. doi:10.1021/bm800987c
26. Klein S. Polysaccharides in Oral Drug Delivery – Recent Applications and Future Perspectives. In: Edgar KJ, Heinze T, Buchanan CM, editors. Polysaccharide Materials: Performance by Design. Washington DC: American Chemical Soeciety; 2009. p. 13–30.
27. Zhang Y, Zhao Q, Wang H, Jiang X, Cha R. Preparation of green and gelatin-free nanocrystalline cellulose capsules. Carbohydr Polym. 2017;164:358–63. doi:10.1016/j.carbpol.2017.01.096
28. Wang C, Huang H, Jia M, Jin S, Zhao W, Cha R. Formulation and evaluation of nanocrystalline cellulose as a potential disintegrant. Carbohydr Polym. 2015;130:275–9. doi:10.1016/j.carbpol.2015.05.007
29. Repka MA, McGinity JW. Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion. J Control Release. 2001;70:341–51.
30. Shokri J, Adibkia K. Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries. In: Ven TGMVD, editor. Cellulose – Medical, Pharmaceutical and Electronic Applications. 2nd editio. IntechOpen; 2013. p. 47–66.
31. Rodrigues A, Emeje M. Recent applications of starch derivatives in nanodrug delivery. Carbohydr Polym. 2012;87(2):987–94. doi:10.1016/j.carbpol.2011.09.044
32. Hiorth M, Nilsen S, Tho I. Bioadhesive Mini-Tablets for Vaginal Drug Delivery. Pharmaceutics. 2014;6:494–511.
33. Gopinath V, Saravanan S, Al-maleki AR, Ramesh M, Vadivelu J. Biomedicine & Pharmacotherapy A review of natural polysaccharides for drug delivery applications : Special focus on cellulose , starch and glycogen. Biomed Pharmacother. 2018;107(April):96–108. doi:10.1016/j.biopha.2018.07.136
34. Tang L, Lin F, Li T, Cai Z, Hong B. Design and synthesis of functionalized cellulose nanocrystals-based drug conjugates for colon-targeted drug delivery. Cellulose. 2018;25(8):4525–36. doi:10.1007/s10570-018-1904-2
35. Chen J, Li X, Chen L, Xie F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr Polym. 2018;191:242–54.
36. Thomas D, Latha MS, Thomas KK. Synthesis and in vitro evaluation of alginate-cellulose nanocrystal hybrid nanoparticles for the controlled oral delivery of rifampicin. J Drug Deliv Sci Technol. 2018;46(May):392–9. doi:10.1016/j.jddst.2018.06.004
37. Mohanta V, Madras G, Patil S. Layer-by-layer assembled thin films and microcapsules of nanocrystalline cellulose for hydrophobic drug delivery. ACS Appl Mater Interfaces. 2014;6:20093–101.
38. Yang J, Li F, Li M, Zhang S, Liu J, Liang C, et al. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr Polym. 2017;173:223–32. doi:10.1016/j.carbpol.2017.06.006
39. Talón E, Trifkovic KT, Vargas M, Chiralt A, González-martínez C. Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr Polym. 2017;175:122–30. doi:10.1016/j.carbpol.2017.07.067
40. Simi CK, Abraham TE. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst Eng. 2007;30:173–80.
41. Alison MR. Cancer. In: Encyclopedia of Life Sciences. John Wiley & Sons Ltd; 2001. p. 1–8.
42. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. Analysis of anticancer drugs: A review. Talanta. 2011;85(5):2265–89. doi:10.1016/j.talanta.2011.08.034
43. Ebadi M. Taxol (Paclitaxel) and Cancer Chemotherapy. In: Pharmacodynamic Basis of Herbal Medicine. 2nd ed. Taylor & Francis Group, LLC; 2007. p. 573–84.
44. Huizing MT, Misser VHS, Pieters RC, ten Bokkel Huinink WW, Veenhof CHN, Vermorken JB, et al. Taxanes: A new class of antitumor agents. Cancer Invest. 1995;13(4):381–404.
45. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25(18):2677–81. doi:10.1091/mbc.E14-04-0916
46. Panchagnula R. Pharmaceutical aspects of paclitaxel. Int J Pharm. 1998;172:1–15.
47. Benet LZ. The Role of BCS (Biopharmaceutics Classification System) and BDDCS (BIopharmaceutics Drug Disposition Classification System) in Drug Development. J Pharm Sci. 2013;102(1):34–42.
48. Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release. 2017;248:71–95. doi:10.1016/j.jconrel.2017.01.014
49. Singla AK, Garg A, Aggarwal D. Paclitaxel and its formulations. Int J Pharm. 2002;235(1–2):179–92.
50. Surapaneni MS, Das SK, Das NG. Designing Paclitaxel Drug Delivery Systems Aimed at Improved Patient Outcomes: Current Status and Challenges. ISRN Pharmacol. 2012;2012:1–15. doi:10.5402/2012/623139
51. Zhang Z, Mei L, Feng S-S. Paclitaxel drug delivery systems. Expert Opin Drug Deliv. 2013;10(3):325–40.
52. Dranitsaris G, Yu B, Wang L, Sun W, Zhang A, Zhou Y, et al. Abraxane® versus Taxol® for patients with advanced breast cancer: A prospective time and motion analysis from a Chinese health care perspective. J Oncol Pharm Pract. 2016;22(2):205–11.
53. Florence AT. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discov Today Technol. 2005;2(1):75–81.
54. Halliday HL. Surfactants: Past, present and future. J Perinatol. 2008;28:47–56.
55. Santos S, Medronho B, Santos T, Antunes FE. Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment. In: Coelho J, editor. Advances in Predictive, Preventive and Personalised Medicine 4. 2013. doi:10.1007/978-94-007-6010-3
56. Myers D. Surfaces, Interfaces, and Colloids. Second edi. New York: John Wiley & Sons, Inc.; 1999.
57. Ito E, Yip KW, Katz D, Fonseca SB, Hedley DW, Chow S, et al. Potential Use of Cetrimonium Bromide as an Apoptosis-Promoting Anticancer Agent for Head and Neck Cancer. Mol Pharmacol. 2009;76(5):969–83.
58. Garai S, Koskinen A, Mahato S, Otsomaa L. Progress in the Chemistry of Organic Natural Products. Herz W, Kirby G, Moore R, Steglich W, Tamm C, editors. New York: Springer-Verlag Wien; 1998.
59. Holmberg K. Natural Surfactants. Curr Opin Colloid Interface Sci. 2001;6:148–59.
60. Rao A V., Gurfinkel DM. The bioactivity of saponins: Triterpenoid and steroidal glycosides. Drug Metabol Drug Interact. 2000;17(1–4):211–35.
61. Oleszek W, Hamed A. Saponin-Based Surfactants. In: Kjellin M, Johansson I, editors. Surfactants from Renewable Resources. John Wiley & Sons, Ltd.; 2010. p. 239–49.
62. Mroczek A. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochem Rev. 2015;14(4):577–605. doi:10.1007/s11101-015-9394-4
63. Bakshi MS. How Surfactants Control Crystal Growth of Nanomaterials. Cryst Growth Des. 2016;16(2):1104–33.
64. Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K. Critical Roles of Cationic Surfactants in the Preparation of Colloidal Mesostructured Silica Nanoparticles: Control of Mesostructure, Particle Size, and Dispersion. ACS Appl Mater Interfaces. 2014;6:3491–500.
65. Griesser J, Burtscher S, Köllner S, Nardin I, Prüfert F, Bernkop-Schnürch A. Zeta potential changing self-emulsifying drug delivery systems containing phosphorylated polysaccharides. Eur J Pharm Biopharm. 2017;119:264–70. doi:10.1016/j.ejpb.2017.06.025
66. Xu G, Wang C, Yao P. Stable emulsion produced from casein and soy polysaccharide compacted complex for protection and oral delivery of curcumin. Food Hydrocoll. 2017;71:108–17. doi:10.1016/j.foodhyd.2017.05.010
67. Zabaleta V, Ponchel G, Salman H, Agüeros M, Vauthier C, Irache JM. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: Permeability and pharmacokinetic study. Eur J Pharm Biopharm. 2012;81(3):514–23. doi:10.1016/j.ejpb.2012.04.001
68. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci. 2016;11(3):404–16. doi:10.1016/j.ajps.2015.09.004
69. Qing W, Wang Y, Wang Y, Zhao D, Liu X, Zhu J. The modified nanocrystalline cellulose for hydrophobic drug delivery. Appl Surf Sci. 2016;366:404–9. doi:10.1016/j.apsusc.2016.01.133
70. Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym. 2017;163:261–9. doi:10.1016/j.carbpol.2017.01.036
71. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM. The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine. 2011;6:321–30.
72. Hiai S, Oura H, Nakajima T. Color reaction of some sapogenins. Planta Med. 1976;(2):116–22.
73. Sylvester PW. Drug Design and Discovery: Methods and Protocols. In: Methods in Molecular Biology. 2011. p. 157–68. doi:10.1007/978-1-61779-012-6
74. Zhong L, Fu S, Peng X, Zhan H, Sun R. Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr Polym. 2012;90(1):644–9. doi:10.1016/j.carbpol.2012.05.091
75. Viana RB, Da Silva ABF, Pimentel AS. Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem. 2012;2012:1–15.
76. Ortiz-Tafoya MC, Tecante A. Physicochemical characterization of sodium stearoyl lactylate (SSL), polyoxyethylene sorbitan monolaurate (Tween 20) and κ-carrageenan. Data Br. 2018;19:642–50. doi:10.1016/j.dib.2018.05.064
77. Nara S, Komiya TT. Studies on the Relationship Between Water-satured State and Crystallinity by the Diffraction Method for Moistened Potato Starch. Starch - Stärke. 1983;35(12):407–10. doi:10.1002/star.19830351202
78. Masoudipour E, Kashanian S, Azandaryani AH, Omidfar K, Bazyar E. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose. 2017;24(10):4217–34.
79. Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study. Biopolymers. 2008;89(9):761–8.
80. Hebeish A, El-Rafie MH, EL-Sheikh MA, El-Naggar ME. Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch With and Without Surfactant. J Inorg Organomet Polym Mater. 2014;24(3):515–24.
81. Yan X, Chang Y, Wang Q, Fu Y, Zhou J. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation. Int J Biol Macromol. 2017;97:481–8. doi:10.1016/j.ijbiomac.2017.01.075
82. Lian X, Cheng K, Wang D, Zhu W, Wang X. Analysis of crystals of retrograded starch with sharp X-ray diffraction peaks made by recrystallization of amylose and amylopectin. Int J Food Prop. 2018;20(3):S3224–36. doi:10.1080/10942912.2017.1362433
83. LeCorre D, Bras J, Dufresne A. Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J Nanoparticle Res. 2011;13(12):7193–208.
84. Carbinatto FM, De Castro AD, Cury BSF, Magalhães A, Evangelista RC. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate. Int J Pharm. 2012;423(2):281–8. doi:10.1016/j.ijpharm.2011.11.042
85. Srichuwong S, Isono N, Mishima T, Hisamatsu M. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int J Biol Macromol. 2005;37(3):115–21.
86. Kim HY, Park DJ, Kim JY, Lim ST. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydr Polym. 2013;98(1):295–301. doi:10.1016/j.carbpol.2013.05.085
87. Warren FJ, Gidley MJ, Flanagan BM. Infrared spectroscopy as a tool to characterise starch ordered structure - A joint FTIR-ATR, NMR, XRD and DSC study. Carbohydr Polym. 2016;139:35–42. doi:10.1016/j.carbpol.2015.11.066
88. Zhang XM, Yang DP, Xie ZY, Xue X, Zhu LP, Wang DM, et al. A new triterpenoid saponin and an oligosaccharide isolated from the fruits of Sapindus mukorossi. Nat Prod Res. 2014;28(14):1058–64.
89. Morikawa T, Xie Y, Asao Y, Okamoto M, Yamashita C, Muraoka O, et al. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry. 2009;70(9):1166–72. doi:10.1016/j.phytochem.2009.06.015
90. Sharma A, Sati SC, Sati OP, Sati MD, Kothiyal SK, Semwal DK, et al. A new triterpenoid saponin and antimicrobial activity of ethanolic extract from Sapindus mukorossi Gaertn. J Chem. 2013;2013.
91. He X, Rui HL. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J Agric Food Chem. 2007;55(11):4366–70.
92. Srinivasa Rao M, Syed Asad B, Fazil MA, Sudharshan RD, Rasheed SA, Pradeep HA, et al. Evaluation of protective effect of Sapindus mukorossi saponin fraction on CCl4-induced acute hepatotoxicity in rats. Clin Exp Gastroenterol. 2012;5(1):129–37.
93. Karami Ghaleseiedi Z, Dadkhah Tehrani A, Parsamanesh M. Starch-based dual amphiphilic graft copolymer as a new pH-sensitive maltidrug co-delivery system. Int J Biol Macromol. 2018;118:913–20. doi:10.1016/j.ijbiomac.2018.06.156
94. Higgins HG, Stewart CM, Harrington KJ. Infrared spectra of cellulose and related polysaccharides. J Polym Sci. 1961;51(1):59–84. doi:10.1002/pol.1961.120510105
95. Lin N, Dufresne A. Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale. 2014;6(10):5384–93. doi:10.1039/C3NR06761K
96. Whittam MA, Orford PD, Ring SG, Clark SA, Parker ML, Cairns P, et al. Aqueous dissolution of crystalline and amorphous amylose-alcohol complexes. Int J Biol Macromol. 1989;11(6):339–44.
97. Avérous L, Halley PJ. Biocomposites based on plasticized starch. Biofuels, Bioprod Biorefining. 2009 May;3(3):329–43. doi:10.1002/bbb.135
98. Hizukuri S. X-ray diffractometric studies on starches. Agric Biol Chem. 1961;25(1):45–9.
99. Shang Q, Zhang A, Wu Z, Huang S, Tian R. In vitro evaluation of sustained release of risperidone-loaded microspheres fabricated from different viscosity of PLGA polymers. Polym Adv Technol. 2018;29(1):384–93.
100. Lozoya-Agullo I, González-Álvarez I, González-Álvarez M, Merino-Sanjuán M, Bermejo M. In Situ Perfusion Model in Rat Colon for Drug Absorption Studies: Comparison with Small Intestine and Caco-2 Cell Model. J Pharm Sci. 2015;104(9):3136–45.
101. An T, Choi J, Kim A, Lee JH, Nam Y, Park J, et al. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process. Int J Pharm. 2016;503(1–2):8–15. doi:10.1016/j.ijpharm.2016.02.023
102. Chen W, Palazzo A, Hennink WE, Kok RJ. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Mol Pharm. 2017;14(2):459–67.
103. Tu H, Qu Y, Hu X, Yin Y, Zheng H, Xu P, et al. Study of the sigmoidal swelling kinetics of carboxymethylchitosan-g- poly(acrylic acid) hydrogels intended for colon-specific drug delivery. Carbohydr Polym. 2010;82(2):440–5.
104. Nakajima T, Takeuchi I, Ohshima H, Terada H, Makino K. Push-Pull Controlled Drug Release Systems: Effect of Molecular Weight of Polyethylene Oxide on Drug Release. J Pharm Sci. 2018;107(7):1896–902. doi:10.1016/j.xphs.2018.02.022
105. Langenbucher F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24(12):979–81.
106. Duvvuri S, Gaurav Janoria K, Mitra AK. Effect of polymer blending on the release of ganciclovir from PLGA microspheres. Pharm Res. 2006;23(1):215–23.
107. Paul DR, McSpadden SK. Diffusional release of a solute from a polymer matrix. J Memb Sci. 1976 Jan;1(1):33–48. doi:10.1016/S0376-7388(00)82256-5
108. Higuchi T. Mechanism of Sustained- Action Medication. J Pharm Sci. 1963;52:1145–9.
109. Higuchi T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J Pharm Sci. 1961;50:874–5.
110. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.
111. Siepmann J, Peppas NA. Higuchi equation: Derivation, applications, use and misuse. Int J Pharm. 2011;418(1):6–12. doi:10.1016/j.ijpharm.2011.03.051
112. Shah AK, Wyandt CM, Stodghill SP. Physico chemical characterization of a novel anti-cancer agent and its comparison to Taxol®. Drug Dev Ind Pharm. 2013;39(1):89–101.
113. Mastropaolo D, Camerman A, Luo Y, Brayer GD, Camermantt N. Crystal and molecular structure of paclitaxel ( taxol ). Proc Natl Acad Sci USA. 1995;92(July):6920–4.
114. Bartnik FG. Interaction of Anionic Surfactants with Protein, Enzymes, and Membranes. In: Gloxhuber C, Kunstler K, editors. Anionic Surfactants: Biochemistry, Toxicology, Dermatology. 2nd ed. United Stated of America: Marcel Dekker, Inc.; 1992. p. 1–42.
115. Attwood D, Florence AT. Surfactant Systems: Their chemistry, pharmacy and biology. New York: Chapman and Hall; 1983.
116. Borner MM, Schneider E, Pirnia F, Sartor O, Trepel JB, Myers CE. The detergent Triton X-100 induces a death pattern in human carcinoma cell lines that resembles cytotoxic lymphocyte-induced apoptosis. FEBS Lett. 1994;353(2):129–32.
117. Liu Z, Bendayan R, Wu XY. Triton-X-100-modified polymer and microspheres for reversal of multidrug resistance. J Pharm Pharmacol. 2001;53(6):779–87.
118. Man S, Gao W, Zhang Y, Huang L, Liu C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia. 2010;81(7):703–14. doi:10.1016/j.fitote.2010.06.004
119. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: A review. Phytochem Rev. 2010;9(3):425–74.

無法下載圖示 全文公開日期 2024/07/24 (校內網路)
全文公開日期 2024/07/24 (校外網路)
全文公開日期 2024/07/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE