簡易檢索 / 詳目顯示

研究生: 戴賢明
Eric - Kristia Putra
論文名稱: 以氮摻雜碳包覆磷酸鋰鐵並增進其鋰離子電池電化學表現之研究
Investigation of N-doped Carbon Coated LiFePO4 with Enhanced Electrochemical Performance for Lithium Ion Batteries
指導教授: 黄炳照
Bing-Joe Hwang
口試委員: 吳乃立
Nae-Lih Wu
王復民
Fu-Ming Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 117
中文關鍵詞: 磷酸鋰鐵包覆三聚氰胺甲醛樹脂氮摻雜氮
外文關鍵詞: LiFePO4, coating, melamine-formaldehyde resin, nitrogen-doped carbon
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

LiFePO4具有潛力成為下一代陰極材料,其具有低成本、環境友好性及高熱穩定性之優點,但受限於材料本身之低導電性,因而循環及高速率充放電表現仍舊不佳。本研究利用氮摻雜碳進行LiFePO4之包覆,試圖克服其本身低導電度之缺點。
本研究利用三聚氰胺甲醛樹脂(MFR, Melamine-formaldehyde resin)做為包覆以固態法合成LiFePO4之前驅物再進行熱處理,並利用XRD、SEM、EDS、FTIR及Raman光譜進行分析。由XRD結果顯示,以5毫升三聚氰胺甲醛樹脂條件下包覆之LiFePO4,其結構並無改變,也無不純物之生成。但於更高比例之三聚氰胺甲醛樹脂進行處理則會有不純物產生,主要是因為於高溫下三聚氰胺甲醛樹脂分解產生之氨氣有更高之活性與LiFePO4反應產生Fe2P及Li3PO4。而FTIR分析則確認於表面包覆後樣品內存在含氮的鍵結,且Raman光譜結果中D-band強度隨氮含量增加而上升亦顯示氮摻雜對碳結構之影響。由SEM結果則觀察到隨煅燒時間增加,LiFePO4之顆粒大小變小且其聚集程度亦較低,而EDS則發現隨煅燒時間及增加氮含量損失越大,此亦解釋了顆粒大小變小之結果。
電極製作上之參數亦進行了優化,其以5 毫升三聚氰胺甲醛樹脂、10小時及700 oC條件下處理之LiFePO4可得到最佳之電化學表現,於0.1C充放電速率下,第15圈可逆電容可達133.6 mAh/g,相較於未包覆之LiFePO4僅 77 mAh/g。而過電位之現象亦隨循環圈數之增加而降低,其於第15圈充放電時之過電位為54 mV,相比於LiFePO4未包覆之LiFePO4則為320 mV。
由電化學及材料分析結果顯示經氮摻雜碳包覆後之LiFePO4可改善其充放電效率,其可能為氮元素存在於碳之結構中,造成結構空穴及電子空乏,因而降低其鋰離子穿過碳層之能障所造成。


LiFePO4 have potential to be next generation cathode materials. However, despite the low cost, environmental benign and high thermal stability, this material suffers from low conductivity resulting in poor cycling performance and rate capabilities. This work dedicated to adopt nitrogen-doped carbon coating into LiFePO4 systems to overcome the poor conductivity.
Melamine-formaldehyde resin adopted as a nitrogen-doped carbon precursor to coat solid-state LiFePO4 and the resulting products after heat treatment were characterized by XRD, SEM, EDS, FTIR and Raman spectroscopy. XRD show no structural change or impurity formation for the case of 5 mL-MFR treatment but not in the higher amount. The evolution of ammonia at higher temperature makes LiFePO4 more reactive and therefore the impurity of Fe2P and Li3PO4 were formed. The FTIR results confirm the presence of nitrogen in the sample after coating, so do the results from Raman which shows the increase of D-band as the effect of nitrogen in the carbon structure. The morphology of the samples observed by SEM shows the smaller particle size and less agglomeration as the sintering time prolonged. The EDS chemical analysis also shows that the loss of nitrogen increase in longer sintering time, which result in smaller particle size.
The coating process has been systematically optimized. The highest performance of coated LiFePO4 was achieved under 5 mL-MFR treatments on LiFePO4 followed by 10 hours sintering at 700 °C. It was found that the reversible capacity of 133.6 mAh/g was obtained in comparison with 77 mAh/g of the bare one at the 15th cycle (0.1 C discharge rates). The observed overpotential decrease with the increase of cycle number, the coated sample shows only 54 mV overpotential compared 320 mV to bare one at 15th cycle.
The electrochemical and material analysis suggests that rate capability of LiFePO4 was improved with the incorporated nitrogen in the carbon structure. The presence of vacancy and electron deficiency came from incorporated nitrogen site lowers the energy barrier of the Li-ion passing through the carbon network.

ABSTRACT i 摘要 ii ACKNOWLEDGEMENT iii Table of Contents v List of Figures vii List of Tables x Chapter I Introduction 1 I.1 Background 1 I.2 Problems Formulation 2 I.3 The Purpose of the Research 3 Chapter II Literature Review 4 II.1 Battery 4 II.2 Principle of Li-ion Battery 5 II.3 Cathode Materials 8 II.3.1 Layered Metal-Oxide structure 9 II.3.2 Spinel structures 10 II.3.3 Olivine Structures 12 II.4 LiFePO4 13 II.4.1 Synthesis of LiFePO4 15 II.4.2 Supervalent cation doping 17 II.4.3 Conductive network coating 19 Chapter III Research Methodology 27 III.1 Research Design 27 III.2 Materials 29 III.3 Equipment 30 III.4 Experimental Procedure 30 III.4.1 Solid-State LiFePO4 30 III.5 Carbon-nitride Coating 33 III.5.1 Solid-state melamine coating 33 III.5.2 Solution-based Carbon-nitride coating 33 III.5.3 Melamine-Formaldehyde Resins (MFR) coating 34 III.6 Sample Characterization 37 III.6.1 X-ray Diffraction 37 III.6.2 Scanning Electron Microscopy and Energy Dispersive Spectroscopy 37 III.6.3 Fourier Transform Infrared Spectroscopy 37 III.6.4 Raman Spectroscopy 37 III.6.5 Thermal Gravimetric Analysis 38 III.7 Electrochemical Test 38 III.7.1 Electrode Preparation 38 III.7.2 Coin Cell Assembly 39 Chapter IV Results and Discussion 40 IV.1 Pristine LiFePO4 Synthesis 40 IV.2 Solid-state Melamine Coating 43 IV.3 Solution-based Carbon-Nitride Coating 44 IV.4 Melamine-Formaldehyde Resin Coating 48 IV.4.1 Melamine-Formaldehyde Resin Conditioning 48 IV.4.2 Sintering Optimization 52 IV.5 Discussion 82 IV.5.1 X-ray Absorption Near-Edge Spectroscopy (XANES) 82 IV.5.2 X-ray Photoelectron Spectroscopy (C 1s and N 1s) 83 Chapter V Conclusion 87 Bibliography 88 APPENDIX PRELIMINARY TEST RESULTS 96

[1] Zhang, W.-J. Structure and performance of LiFePO4 cathode materials: A review. Journal of Power Sources, 196, 6 2011), 2962-2970.
[2] Heo, J. B., Lee, S. B., Cho, S. H., Kim, J., Park, S. H. and Lee, Y. S. Synthesis and electrochemical characterizations of dual doped Li1.05Fe0.997Cu0.003 PO4. Materials Letters, 632009), 581-583.
[3] Sun, C. S., Zhou, Z., Xu, Z. G., D.G.Wang, J.P.Wei, Bian, X. K. and Yan, J. Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. Journal of Power Sources, 1932009), 841-845.
[4] Yang, M.-R. and Ke, W.-H. The Doping Effect on the Electrochemical Properties of LiFe0.95M0.05PO4 (M=Mg2+, Ni2+, Al3+, or V3+) as Cathode Materials for Lithium-Ion Cells. Journal of Electrochemical Society, 155, 10 2008), A729-A732.
[5] Meligrana, G., Gerbaldi, C., Tuel, A., Bodoardo, S. and Penazzi, N. Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. Journal of Power Sources, 1602006), 516-522.
[6] Ferrari, S., Lavall, R. L., Capsoni, D., Quartarone, E., Magistris, A., Mustarelli, P. and Canton, P. Influence of Particle Size and Crystal Orientation on the Electrochemical Behavior of Carbon-Coated LiFePO4. Journal of Physical Chemistry C, 1142010), 12598-12603.
[7] Kim, D. and Kim, J. Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties. Electrochemical and Solid-State Letters, 9, 9 2006), A439-442.
[8] Ellis, B., Kan, W. H., Makahnouk, W. R. M. and Nazar, L. F. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. Journal of Material Chemistry, 172007), 3248-3254.
[9] Chung, S.-Y., Bloking, J. T. and Chiang, Y. M. Electronicaly Conductive Phospho-Olivines as Lithium Storage Electrodes. Nature Materials, 12002), 123-128.
[10] Meethong, N., Kao, Y. H., Speakman, S. A. and Chiang, Y. M. Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Ipact on Structure and Properties. Advanced Functional Materials, 192009), 1060-1070.
[11] Li, Z., Zhang, D. and Yang, F. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material. Journal of Materials Science, 442009), 2435-2443.
[12] Lota, G., Grzyb, B., Frackowiak, E., Machnikowski, J. and Machnikowska, H. Effect of nitrogen in carbon electrode on the supercapacitor performance. Chemical Physics Letters, 4042005), 53-58.
[13] Kang, K. Y., Hong, S. J., Lee, B. I. and Lee, J. S. Enhanced electrochemical capacitance of nitrogen-doped carbon gels synthesized by microwave assisted polymerization of resorcinol and formaldehyde. Electrochemistry Communications, 102008), 1105-1108.
[14] Li, W., Chen, D., Li, Z., Shi, Y., Wan, Y., Wang, G., Jiang, Z. and Zhao, D. Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon, 452007), 1757-1763.
[15] Seo, M.-K., Yang, S., Kim, I.-J. and Park, S.-J. Preparation and electrochemical characteristics of mesoporous carbon sphere for supercapacitors. Materials Research Bulletin, 452010), 10-14.
[16] Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H. and Kodama, M. Supercapacitors Prepared from Melamine-Based Carbon. Chemical Materials, 172005), 1241-1247.
[17] Thomas, A., Antonietti, M., Fischer, A., Goettmann, F., Muller, J. O., Schlogl, R. and Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morhphology and their use as metal-free catalysts. Journal of Material Chemistry, 182008), 4893-4908.
[18] Xu, X., Jiang, S., Zheng, H. and Liu, S. Nitrogen-Doped Carbon Nanotubes: High Electrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Application for Biosensing. ACS Nano, 4, 7 2010), 4292-4298.
[19] Wang, Y., Shao, Y., Matson, D. W., Li, J. and Lin, Y. Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano, 4, 4 2010), 1790-1798.
[20] Geng, D., Liu, H., Chen, Y., Li, R., Sun, X., Ye, S. and Knights, S. Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents. Journal of Power Sources, 1962011), 1795-1801.
[21] Palacin, M. R. Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 38, 9 2009), 2565-2575.
[22] Scrosati, B. Challenge in Portable Power. Nature, 3731995), 557.
[23] Besenhard, J. O. and Winter, M. Insertion reactions in advanced electrochemical energy storage. Pure & Applied Chemistry, 70, 3 1998), 603-608.
[24] Thackeray, M. M. Transition Metal Oxides for Rocking-Chair Cells. Material Resource Society, City, 1995.
[25] Nishi, Y. The Development of Lithium Ion Secondary Batteries. The Chemical Report, 1, 5 2001), 406-413.
[26] Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources, 89, 2 2000), 206-218.
[27] Cheng, F., Tao, Z., Liang, J. and Chen, J. Template-Directed Materials for Rechargeable Lithium-Ion Batteries. Chemistry of Materials, 202008), 667-681.
[28] Liu, N., Li, H., Wang, Z., Huang, X. and Chen, L. Origin of Solid Electrolyte Interphase on Nanosized LiCoO2. Electrochemical and Solid-State Letters, 9, 7 2006), A328-A331.
[29] Fergus, J. W. Recent developments in cathode materials for lithium ion batteries. Journal of Power Sources, 1952010), 939-954.
[30] Ellis, B. L., Lee, K. T. and Nazar, L. F. Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials, 222010), 691-714.
[31] Kramer, D. and Ceder, G. Tailoring the Morphology of LiCoO2: A First Principles Study. Chemistry of Materials, 21, 16 2009), 3799-3809.
[32] Patoux, S. and Doeff, M. M. Direct synthesis of LiNi1/3Co1/3Mn1/3O2 from nitrate precursors. Electrochemistry Communications, 6, 8 2004), 767-772.
[33] Myung, S.-T., Lee, M.-H., Komaba, S., Kumagai, N. and Sun, Y.-K. Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochimica Acta, 50, 24 2005), 4800-4806.
[34] Goodenough, J. B. and Kim, Y. Challenges for Rechargeable Li Batteries. Chemistry of Materials, 222010), 587-603.
[35] Kanno, R., Kondo, A., Yonemura, M., Gover, R., Kawamoto, Y., Tabuchi, M., Kamiyama, T., Izumi, F., Masquelier, C. and Rousse, G. The relationships between phases and structures of lithium manganese spinels. Journal of Power Sources, 81-821999), 542-546.
[36] Whittingham, M. S. Lithium Batteries and Cathode Materials. Chemical Reviews, 1042004), 4271-4301.
[37] Strobel, P., Le Cras, F., Seguin, L., Anne, M. and Tarascon, J. M. Oxygen Nonstoichiometry in Li-Mn-O Spinel Oxides: A Powder Neutron Diffraction Study. Journal of Solid State Chemistry, 135, 1 1998), 132-139.
[38] Yonemura, M., Yamada, A., Kobayashi, H., Tabuchi, M., Kamiyama, T., Kawamoto, Y. and Kanno, R. Synthesis, structure, and phase relationship in lithium manganese oxide spinel. Journal of Materials Chemistry, 142004).
[39] Lavela, P., Sanchez, L. and Tirado, J. L. Effects of Partial Acid Delithiation on the Electrochemical Lithium Insertion Properties of Nickel-Stabilized LiMn2O4 Spinel Oxides. Journal of Solid State Chemistry, 1502000), 196-203.
[40] Zhong, Q., Bonakdarpour, A., Zhang, M., Gao, Y. and Dahn, J. R. Synthesis and Electrochemistry of LiNixMn2-xO4. Journal of the Electrochemical Society, 144, 1 1997).
[41] Myung, S.-T., Komaba, S., Kumagai, N., Yashiro, H., Chung, H.-T. and Cho, T.-H. Nano-crystalline LiNi0.5Mn1.5O4 synthesized by emulsion drying method. Electrochimica Acta, 472002), 2543-2549.
[42] Anantharamulu, N., Koteswara Rao, K., Rambabu, G., Vijaya Kumar, B., Radha, V. and Vithal, M. A wide-ranging review on Nasicon type materials. Journal of Materials Science, 46, 9 2011), 2821-2837.
[43] Tarascon, J. M. and Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 6861 2001), 359-367.
[44] Padhi, A. K., Nanjundaswamy, K. S. and Goodenough, J. B. Phospho-olivines as Positive Electrode Materials for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 144, 4 1997), 1188-1194.
[45] Choi, D., Wang, D., Bae, I.-T., Xiao, J., Nie, Z., Wang, W., Viswanathan, V. V., Lee, Y. J., Zhang, J.-G., Graff, G. L., Yang, Z. and Liu, J. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode. Nano Letters, 10, 8 2010).
[46] Delacourt, C., Laffont, L., Bouchet, R., Wurm, C., Leriche, J.-B., Morcrette, M., Tarascon, J.-M. and Masquelier, C. Toward Understanding of Electrical Limitations (Electronic, Ionic) in LiMPO4 (M = Fe, Mn) Electrode Materials. Journal of the Electrochemical Society, 152, 5 2005), A913-A921.
[47] Yamada, A., Hosoya, M., Chung, S.-C., Kudo, Y., Hinokuma, K., Liu, K.-Y. and Nishi, Y. Olivine-type cathodes: Achievements and problems. Journal of Power Sources, 119-1212003), 232-238.
[48] Wang, D., Buqa, H., Crouzet, M., Deghenghi, G., Drezen, T., Exnar, I., Kwon, N.-H., Miners, J. H., Poletto, L. and Gratzel, M. High-performance, nano-structured LiMnPO4 synthesized via polyol method. Journal of Power Sources, 189, 1 2009), 624-628.
[49] Li, G., Azuma, H. and Tohda, M. LiMnPO4 as the Cathode for Lithium Batteries. Electrochemical and Solid-State Letters, 5, 6 2002), A135-A137.
[50] Yamada, A., Kudo, Y. and Liu, K.-Y. Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4 (0 <= x <= 1). Journal of the Electrochemical Society, 148, 7 2001), A747-A754.
[51] Islam, M. S., Driscoll, D. J., Fisher, C. A. J. and Slater, P. R. Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material. Chemistry of Materials, 172005), 5085-5092.
[52] Morgan, D., Ven, A. V. d. and Ceder, G. Li Conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) Olivine Materials. Electrochemical and Solid-State Letters, 7, 2 2004), A30-A32.
[53] Qin, X., Wang, X., Xiang, H., Xie, J., Li, J. and Zhou, Y. Mechanism for Hydrothermal Synthesis of LiFePO4 Platelets as Cathode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 114, 39 2010), 16806-16812.
[54] Tarascon, J.-M., Recham, N., Armand, M., Chotard, J.-N., Barpanda, P., Walker, W. and Dupont, L. Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis. Chemistry of Materials, 222010), 724-739.
[55] Hsu, K.-F., Tsay, S.-Y. and Hwang, B.-J. Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. Journal of Materials Chemistry, 14, 17 2004), 2690-2695.
[56] Sinha, N. N., Shivakumara, C. and Munichandraiah, N. High Rate Capability of a Dual-Porosity LiFePO4/C Composite. ACS Applied Materials & Interfaces, 2, 7 2010), 2031-2038.
[57] Lim, S., Yoon, C. S. and Cho, J. Synthesis of Nanowire and Hollow LiFePO4 Cathodes for High-Performance Lithium Batteries. Chemistry of Materials, 20, 14 2008), 4560-4564.
[58] Doherty, C. M., Caruso, R. A., Smarsly, B. M. and Drummond, C. J. Colloidal Crystal Templating to Produce Hierarchically Porous LiFePO4 Electrode Materials for High Power Lithium Ion Batteries. Chemistry of Materials, 21, 13 2009), 2895-2903.
[59] Recham, N., Dupont, L., Courty, M., Djellab, K., Larcher, D., Armand, M. and Tarascon, J. M. Ionothermal Synthesis of Tailor-Made LiFePO4 Powders for Li-Ion Battery Applications. Chemistry of Materials, 21, 6 2009), 1096-1107.
[60] Wang, Z., Su, S., Yu, C., Chen, Y. and Xia, D. Synthesises, characterizations and electrochemical properties of spherical-like LiFePO4 by hydrothermal method. Journal of Power Sources, 1842008), 633-636.
[61] Qian, J., Zhou, M., Cao, Y., Ai, X. and Yang, H. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries. Journal of Physical Chemistry, 1142010), 3477-3482.
[62] Sun, C., Rajasekhara, S., Goodenough, J. B. and Zhou, F. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. Journal of the American Chemical Society, 133, 7 2011), 2132-2135.
[63] Sides, C. R., Croce, F., Young, V. Y., Martin, C. R. and Scrosati, B. A High-Rate, Nanocomposite LiFePO4/Carbon Cathode. Electrochemical and Solid-State Letters, 8, 9 2005), A484-A487.
[64] Delacourt, C., Poizot, P., Levasseur, S. and Masqueliera, C. Size Effects on Carbon-Free LiFePO4 Powders: The Key to Superior Energy Density. Electrochemical and Solid-State Letters, 9, 7 2006), A352-A355.
[65] Prosini, P. P., Carewska, M., Scaccia, S., Wisniewski, P., Passerini, S. and Pasquali, M. A New Synthetic Route for Preparing LiFePO[sub 4] with Enhanced Electrochemical Performance. Journal of the Electrochemical Society, 149, 7 2002), A886-A890.
[66] Kosova, N. V., Devyatkina, E. T. and Petrov, S. A. Fast and Low Cost Synthesis of LiFePO4 Using Fe3+ Precursor. Journal of the Electrochemical Society, 157, 11 2010), A1247-A1252.
[67] Wang, L., Huang, Y., Jiang, R. and Jia, D. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochimica Acta, 522007), 6778-6783.
[68] Chang, Z.-R., Lv, H.-J., Tang, H.-W., Li, H.-J., Yuan, X.-Z. and Wang, H. Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries. Electrochimica Acta, 542009), 4595-4599.
[69] Cui, Y., Zhao, X. and Guo, R. Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochimica Acta, 55, 3 2010), 922-926.
[70] Yang, S., Zavalij, P. Y. and Whittingham, M. S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochemistry Communications, 32001), 505-508.
[71] Liu, H., Li, C., Cao, Q., Wu, Y. P. and Holze, R. Effects of heteroatoms on doped LiFePO4/C composites. Journal of Solid State Electrochemistry, 122008), 1017-1020.
[72] Shenouda, A. Y. and Liu, H. K. Studies on electrochemical behaviour of zince doped LiFePO4 for lithium battery positive electrode. Journal of Alloys and Compounds, 4772009), 498-503.
[73] Ou, X., Liang, G., Wang, L., Xu, S. and Zhao, X. Effects of magnesium doping on electronic conductivity and electrochemical properties of LiFePO4 prepared via hydrothermal route. Journal of Power Sources, 1842008), 543-547.
[74] Zhang, M., Jiao, L.-F., Yuan, H.-T., Wang, Y.-M., Guo, J., Zhao, M., Wang, W. and Zhou, X.-D. The preparation and characterization of olivine LiFePO4/C doped with MoO3 by a solution method. Solid State Ionics, 177, 37-38 2006), 3309-3314.
[75] Ni, J. F., Zhou, H. H., Chen, J. T. and Zhang, X. X. LiFePO4 doped with ions prepared by co-precipitation method. Materials Letters, 59, 18 2005), 2361-2365.
[76] Delacourt, C., Wurm, C., Laffont, L., Leriche, J.-B. and Masquelier, C. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites. Solid State Ionics, 1772006), 333-341.
[77] Wu, S.-h., Shiu, J.-J. and Lin, J.-Y. Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials. Journal of Power Sources, 196, 16 2011), 6676-6681.
[78] Kadoma, Y., Kim, J.-M., Abiko, K., Ohtsuki, K., Ui, K. and Kumagai, N. Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochimica Acta, 552010), 1034-1041.
[79] Liang, G., Wang, L., Ou, X., Zhao, X. and Xu, S. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. Journal of Power Sources, 1842008), 538-542.
[80] Murugan, A. V., Muraliganth, T. and Manthiram, A. Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries. Journal of Physical Chemistry C, 112, 37 2008), 14665-14671.
[81] Yu, L., Liu, Q. and Wang, H. Synthesis of LiFePO4/C cathode materials using a green and low-cost method. IONICS, 15, 6 2009), 689-692.
[82] Jin, B., Gu, H.-B., Zhang, W., Park, K.-H. and Sun, G. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries. Journal of Solid State Electrochemistry, 122008), 1549-1554.
[83] Konno, H., Ito, T., Ushiro, M., Fushimi, K. and Azumi, K. High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method. Journal of Power Sources, 195, 6 2010), 1739-1746.
[84] Lagrini, A., Deslouis, C., Cachet, H., Benlahsen, M. and Charvet, S. Elaboration and electrochemical characterization of nitrogenated amorphous carbon films. Electrochemistry Communications, 62004), 245-248.
[85] Guo, Q., Xie, Y., Wang, X., Lv, S., Hou, T. and Liu, X. Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures. Chemical Physics Letters, 3802003), 84-87.
[86] Uddin, M. N. and Yang, Y. S. Sol-gel synthesis of well-crystallized C3N4 nanostructures on stainless steel substrates. Journal of Materials Chemistry, 192009), 2909-2911.
[87] Qiu, Y. and Gao, L. Chemical synthesis of turbostratic carbon nitride, containing C-N crystallites, at atmospheric pressure. Chemical Communication2003), 2378-2379.
[88] Vinu, A., Ariga, K., Mori, T., Nakanishi, T., Hishita, S., Golberg, D. and Bando, Y. Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials, 172005), 1648-1652.
[89] Gracia, J. and Kroll, P. First principle study of C3N4 carbon nitride nanotubes. Journal of Materials Chemistry, 192009), 3020-3026.
[90] Ma, Y., Foster, A. S., Krasheninnikov, A. V. and Nieminen, R. M. Nitrogen in graphite and carbon nanotubes: Magnetism and mobility. Physical Review B, 722005).
[91] Frackowiak, E. and Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 392001), 937-950.
[92] Jang, J. W. and Lee, C. E. Structural study of nitrogen-doping effects in bamboo-shaped multiwalled carbon nanontubes. Applied Physics Letters, 84, 15 2004), 2877-2879.
[93] Li, W., Chen, D., Li, Z., Shi, Y., Wan, Y., Huang, J., Yang, J., Zhao, D. and Jiang, Z. Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor. Electrochemistry Communications, 92007), 569-573.
[94] Ruffo, R., Huggins, R. A., Mari, C. M., Piana, M. and Weppner, W. Phosphate Materials for Cathodes in Lithium Ion Secondary Batteries. IONICS, 112005), 213-219.
[95] Andersson, A. S. and Thomas, J. O. The Source of first-cycle capacity loss in LiFePO4. Journal of Power Sources, 97-982001), 498-502.
[96] Tamiasso-Martinhon, P., Cachet, H., Deslouis, C. and Vivier, V. Amorphous Carbon-nitride a-CNx microelectrode: Fabrication and characterization. Electrochemistry Communications, xxx2010), xxx-xxx.
[97] Konarova, M. and Taniguchi, I. Synthesis of carbon-coated LiFePO4 nanoparticles with high rate performance in lithium secondary batteries. Journal of Power Sources, 1952010), 3661-3667.
[98] Salah, A. A., Mauger, A., Zaghib, K., Goodenough, J. B., Ravet, N., Gauthier, M., F.Gendron and Julien, C. M. Reduction Fe3+of Impurities in LiFePO4 from Pyrolysis of Organic Percursor Used for Carbon Deposition. Journal of the Electrochemical Society, 153, 9 2006), A1692-1701.
[99] Li, X., Zhang, J., Shen, L., Ma, Y., Lei, W., Cui, Q. and Zou, G. Preparation and characterization of graphitic carbon-nitride through pyrolysis of melamine. Applied Physics A: Materials Science & Processing, 942009), 387-392.
[100] Ma, H. A., Xia, X. P., Chen, L. X., Zhu, P. W., Guo, W. L., Guo, X. B., Wang, Y. D., Li, S. Q., Zou, G. T., Zhang, G. and Bex, P. High-pressure pyrolysis study of C3N6H6: a route to preparing bulk C3N4. Journal of Physics: Condensed Matter, 142002), 11269-11273.
[101] Zhao, D., Yang, P., Chmelka, B. F. and Stucky, G. D. Multiphase Assembly of Mesoporous−Macroporous Membranes. Chemistry of Materials, 11, 5 1999), 1174-1178.
[102] Qi, J., Zhao, T., Xu, X., Li, F., Sun, G., Miao, C. and Wang, H. Study of cracking of large molecules over a novel mesoporous beta. Catalysis Communications, 10, 11 2009), 1523-1528.
[103] Wu, Y., Fang, S. and Jiang, Y. Carbon anode materials based on melamine resin. Journal of Materials Chemistry, 8, 10 1998), 2223-2227.
[104] Daley, M. A., Mangun, C. L., DeBarrb, J. A., Riha, S., Lizzio, A. A., Donnals, G. L. and Economy, J. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs). Carbon, 35, 3 1997), 411-417.
[105] Salah, A. A., Jozwiak, P., Zaghib, K., Garbarczyk, J., Gendron, F., Mauger, A. and Julien, C. M. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochimica Acta Part A, 652006), 1007-1013.
[106] Zaghib, K., Charest, P., Dontigny, M., Guerfi, A., Lagace, M., Mauger, A., Kopec, M. and Julien, C. M. LiFePO4: From molten ingot to nanoparticles with high-rate performance in Li-ion batteries. Journal of Power Sources, 1952010), 8280-8288.
[107] Zhi, X., Liang, G., Wang, L., Ou, X., Gao, L. and Jie, X. Optimization of carbon coatings on LiFePO4: Carbonization temperature and carbon content. Journal of Alloys and Compounds, 503, 2 2010), 370-374.
[108] Markevich, E., Sharabi, R., Haik, O., Borgel, V., Salitra, G., Aurbach, D., Semrau, G., Schmidt, M. A., Schall, N. and Stinner, C. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. Journal of Power Sources, 196, 15 2011), 6433-6439.
[109] Khabashesku, V. N., Zimmerman, J. L. and Margrave, J. L. Powder Synthesis and Characterization of Amorphous Carbon Nitride. Chemistry of Materials, 12, 11 2000), 3264-3270.
[110] Mi, C. H., Zhang, X. G., Zhao, X. B. and Li, H. L. Effect of sintering time on the physical and electrochemical properties of LiFePO4/C composite cathodes. Journal of Alloys and Compounds, 424, 1-2 2006), 327-333.
[111] Liu, J., Zhang, Y., Ionescu, M. I., Li, R. and Sun, X. Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis. Applied Surface Science, 257, 17 2011), 7837-7844.
[112] Ou, X., Xu, S., Liang, G., Wang, L. and Zhao, X. Effect of Fe(III) impurity on the electrochemical performance of LiFePO4 prepared by hydrothermal process. Science in China Series E: Technological Sciences, 52, 1 2009), 264-268.
[113] Shiraishi, K., Dokko, K. and Kanamura, K. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. Journal of Power Sources, 146, 1-2 2005), 555-558.
[114] Liu, Y., Cao, C., Li, J. and Xu, X. A novel synthesis of Fe2P–LiFePO4 composites for Li-ion batteries. Journal of Applied Electrochemistry, 40, 2 2010), 419-425.
[115] Xia, Y., Yoshio, M. and Noguchi, H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 52, 1 2006), 240-245.
[116] Bonhomme, F., Lassegues, J. C. and Servant, L. Raman Spectroelectrochemistry of a Carbon Supercapacitor. Journal of the Electrochemical Society, 148, 11 2001), E450-E458.
[117] Malik, R., Zhou, F. and Ceder, G. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat Mater, 10, 8 2011), 587-590.
[118] Haas, O., Deb, A., Cairns, E. J. and Wokaun, A. Synchrotron X-Ray Absorption Study of LiFePO4 Electrodes. Journal of The Electrohemical Society, 152, 1 2005), A191-A196.
[119] Deb, A., Bergmann, U., Cairns, E. J. and Cramer, S. P. Structural Investigarions of LiFePO4 Electrodes by Fe X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 1082004), 7046-7051.
[120] Zhao, T., Chu, W., Zhao, H., Liang, X., Xu, W., Yu, M., Xia, D. and Wu, Z. XAS study of LiFePO4 synthesized by solid state reactions and hydrothermal method. Nuclear Instruments and Methods in Physics Research A2010).
[121] Hsu, K.-F., Hu, S.-K., Chen, C.-H., cheng, M.-Y., Tsay, S.-Y., Chou, T.-C., Sheu, H.-S., Lee, J.-F. and Hwang, B.-J. Formation mechanism of LiFePO4/C composite powders investigated by X-ray absorption spectroscopy. Journal of Power Sources, 1922009), 660-667.
[122] Deb, A., Cairns, E. J., Cramer, S. P. and Bergmann, U. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy. Electrochimica Acta, 502005), 5200-5207.
[123] Wu, Z.-S., Ren, W., Xu, L., Li, F. and Cheng, H.-M. Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano2011), null-null.
[124] Dahn, J. R., Zheng, T., Liu, Y. and Xue, J. S. Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 270, 5236 (October 27, 1995 1995), 590-593.
[125] Reddy, A. L. M., Srivastava, A., Gowda, S. R., Gullapalli, H., Dubey, M. and Ajayan, P. M. Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application. ACS Nano, 4, 11 2010), 6337-6342.
[126] Li, Y. F., Zhou, Z. and Wang, L. B. CNx nanotubes with pyridinelike structures: p-type semiconductors and Li storage materials. Journal of Chemical Physics, 129, 10 2008).
[127] Zhao, B., Jiang, Y., Zhang, H., Tao, H., Zhong, M. and Jiao, Z. Morphology and electrical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources, 189, 1 2009), 462-466.
[128] Li, C., Cao, C.-B. and Zhu, H.-S. Graphitic carbon nitride thin films deposited by electrodeposition. Materials Letters, 58, 12-13 2004), 1903-1906.

無法下載圖示 全文公開日期 2016/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE