簡易檢索 / 詳目顯示

研究生: 柯元富
Yuan-Fu Ke
論文名稱: 氧化釕奈米桿電化學電容製備與量測
Preparation of RuO2 Nanorods Electrochemical Capacitors and Its Property Measurement
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 許貫中
Kung-Chung Hsu
胡啟章
Chi-Chang Hu
黃鶯聲
Ying-Sheng Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 氧化釕電化學電容器奈米桿
外文關鍵詞: RuO2 nanorods, electrochemical capacitor
相關次數: 點閱:291下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要是藉由有機金屬化學氣相沉積法製備具有不同二氧化釕奈米相電極,再利用SEM與XRD圖譜來分析奈米材料的結構特性,進而研究其循環伏安圖、充放電行為與交流阻抗的電化學電容性質。
利用MOCVD的方式,可於LiNbO3(100)與Sapphire(0001)兩種不同基材上合成出奈米桿與形似壁磚直立狀的二氧化釕材料,或控制沉積時間的長短,成長出具有不同高度的奈米桿。在LiNbO3基材上所成長出的二氧化釕奈米桿,成長方向[001],繞射面(002)強度隨奈米桿高度增加而增強,且審視電鏡影像,隨著桿高的增加其奈米桿頂的尺寸也隨之增大,而當成長時間拉長時,觀察到的奈米桿數目密度隨之減少。在SA(0001)基材上的二氧化釕, RuO2[001]則貼著基材方向成長,且沿三個可能的基材方向SA[ ]發展。
RuO2/LNO與RuO2/SA兩不同形貌電極的循環伏安圖,經過長時間的電極作用後,在圖中的單晶特徵峰會漸漸地減少,而趨向似矩形。由可收授電容值圖形可了解到,掃流速率增加時因受內電阻影響亦增加,導致在電極的可收授電容值有隨之降低的驅勢,且當掃流速率增大到700mV/sec以上,其奈米桿單位面積上的電荷量與掃流速率平方根的關係有偏離原本線性的現象,但奈米磚則不致如此,這顯示奈米桿電極雖擁有的比面積比形似壁磚直立狀的電極高,但在高掃流速率下並非全部面積都有真正貢獻到。而因二氧化釕材料於電極底部跟表面部分的孔隙度有所差別,使得在充放電的圖形中我們可發現有高低充放電速率區的不同。
我們製備的奈米桿電極,其電容值隨著奈米桿高度增加而增加,說明了因奈米桿高度增加所帶來高表面積的效應,但也因孔隙深度的增加,讓孔洞內面積無法像孔洞口面積一般等效貢獻於電容。由不同高度二氧化釕奈米桿充放電行為所測得的的比能量會隨著高度的增高而變大,這與所測得的比電容量有相同的趨勢,但其比功率卻是隨高度增加而變小,可由內部電阻增加解釋之,交流阻抗分析圖譜亦指出內部電阻隨奈米桿高度增加而增加,而且顯示較矮的奈米桿電容功率應較大。一般而論,與其它電容相比較,RuO2奈米桿的電容比功率是相當高的。放在Ragone圖中與其他超高電容與電池比較,RuO2奈米桿電容具有超高電容的比功率與二次電池的比能量。


The thesis discusses the preparation of RuO2 nanophases with various structural feature, and the characterization them using scanning electron microscopy SEM and X-ray diffraction XRD. The RuO2 nanophase electrodes are used in fabricating the electrochemical capacitors. Their capacitative properties are studied using cyclic voltammetry CV, charging-discharging measurement, and electrochemical impedance spectroscopy EIS.
Through metalorganic chemical vapor deposition, RuO2 nanophases of standing rods and tiles are grown on LiNbO3(100) LNO and sapphire(0001) SA substrates. We have also grown nanorods of different height via control on the deposition time. The nanorods are vertically grown on LiNbO3(100) in the [001] direction of rutile structure. The intensity of the reflection plane (002) increases with the average height of nanorods. Inspection of the SEM images shows that the number density of nanorods decreases as the deposition time increases. The growth direction [001] of the nanophase on SA(0001) is along the substrate plane. The growth direction is along one of the three possible SA[ 010] directions.
Comparison of the CV diagrams of two nanophases on LNO and SA substrates indicates that the characteristic peaks of RuO2 single crystals decrease after prolonged cycling, and the diagrams approach a mirror-like rectangle. The diagram of accessible charge versus electrode potential shows that the influence of internal resistance increases with the sweep rate, and it leads to reduction of accessible charge. When the sweep rate is over 700 mVs-1, the accessible charge of nanorods deviates from the linear relation with the square root of sweep rate, but not that of nanometer tiles. The CV results suggest that although the capacitance of nanorods is higher, yet not the entire electrolyte-solid interface contribute to the capacitance under high sweep rate. Also owing to the difference between the nanophases near the substrate and those away from the substrate, the charge rate can be distinguished into the fast and the slow charging regions, so is the discharging rate.
The nanorods capacitors prepared exhibit the capacitance increases with the average height of rods. The capacitance increase points out the effect of increasing surface area. But the inner area of nanorods is not as effective as the outer surface in contribution in capacitance increase because the depth also increases. The charge-discharge measurement of different height nanorods indicates that the specific energy stored increases with height, but the specific power decreases. The trend can also be explained by the internal resistance. The EIS spectra show that the internal resistance increases with the average height, and the shorter nanorods should possess higher specific power. Generally speaking, the specific power of RuO2 nanorods is relatively high. If the nanorods capacitors are placed in the Ragone plot and compared with other batteries and supercapacitors, the RuO2 nanorods capacitors are featured with the specific power of supercapacitors and the specific energy of secondary batteries.

目 錄 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅲ 誌謝…………………………………………………………………….Ⅴ 目錄…………………………………………………………………….Ⅵ 圖目錄………………………………………………………………… Ⅸ表目錄…………………………………………………………………ⅩⅡ 第一章 緒論………………………………………………… 1 1-1 電化學電容器介………………………………………… 1 1-1-1 電化學電容器界面現象 - 電雙層……………… 1 1-1-2 偽電容 ……………………………………………5 1-1-3 電雙層電容的代表 – 多孔性碳電極……………6 1-1-4 de Levie 模式與其對電化學電容之影響………9 1-2 二氧化釕之簡介…………………………………………18 1-2-1 氧化釕晶體之結構……………………………… 19 1-2-2 氧化釕晶體之金屬電導特性…………………… 19 1-2-3 研究動機………………………………………… 21 第二章 實驗方法及步驟…………………………………… 23 2-1 氧化釕奈米相之沉積……………………………………24 2-1-1 實驗藥品及規格………………………………… 24 2-1-2氧化釕化學氣相沉積設備……………………… 25 2-1-3氧化釕化學氣相沉積實驗步驟………………… 27 2-2 結構分析與性質量測儀器……………………………… 30 2-3 BET量測……………………………………………… 32 2-4 氧化釕奈米相電極之製備與電化學分析……………… 33 2-4-1 實驗藥品及規格………………………………… 33 2-4-2 電化學分析儀器………………………………… 34 2-4-3 氧化釕奈米相電極之製備……………………… 35 2-4-4 電化學實驗……………………………………… 36 第三章 結果與討論(一)……………………………43 3-1 二氧化釕奈米相由MOCVD法成長之結果與討論……43 3-1-1 二氧化釕奈米相之成長條件與XRD之圖譜 分析……………………………………………… 43 3-1-2 二氧化釕奈米相之FESEM電鏡分析………… 45 3-1-3 BET之表面積分析……………………………… 47 3-2 二氧化釕奈米相電化學研究之結果與討論……………48 3-2-1 循環伏安法……………………………………… 48 3-2-2 充放電行為………………………………………58 第四章 結果與討論(二)……………………………61 4-1以MOCVD法成長二氧化釕奈米桿之結果與討論…… 61 4-1-1二氧化釕奈米桿之成長條件與FESEM電鏡分析…………………………………………………………61 4-1-2二氧化釕奈米桿之XRD之圖譜分析……………63 4-2 二氧化釕奈米桿電化學研究之結果與討論…………… 66 4-2-1 循環伏安法……………………………………… 66 4-2-2 充放電行為……………………………………… 73 4-2-3 交流阻抗分析…………………………………… 78 第五章 結論………………………………………………… 84 參考文獻………………………………………………………87

參考文獻

1. A. Nishino, “Capacitors: operating principles, current market and technical trends”, J. Power Sources, Vol.60, pp.137-147(1996).
2. W. Schmickler, Interfacial Electrochemistry, Oxford Univ. Press, New York,(1996).
3. B. E. Conway, Electrochemistry Supercapacitors, Scientific(Funda-)
mentals and Technological Applications, Kluwer Academic / plenum publishers, New York,(1999).
4. D. H. Everentt, Trans. Farady Soc., Vol.50, p.187 (1954).
5. D. H. Everentt, Trans. Farady Soc., Vol.51, p.1551 (1955).
6. D. H. Everentt, P. Nordon, Proc. Roy. Soc, London., Vol.A259, p.351 (1960)
7. J. P. Zeng, J. Huang, T. R. Jow, “ The Limitations of Energy Density for Electrochemical Capacitors”, J. Electrochem. Soc., Vol.144, pp.2026-2031(1997).
8. E. Frackowiak and F. Beguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon, Vol.39, pp.937-950(2001).
9. W. G. Pell and B. E. Conway, “Voltammetry at a de Levie brush electrode as a model for electrochemical supercapacitor behaviour”, J. Electroanals. Chem., Vol.500, pp.121-133(2001).
10. B. E. Conway and W. G. Pell, “Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices”, J Power Sources, Vol.105, pp.169-181(2002).
11. W. G. Pell and B.E. Conway,“Analysis of power limitations at porous supercapacitor electrodes under cyclic voltammetry modulation and dc charge”, J. Power Sources, Vol.96, pp.57-67(2001).
12. R. de Levie, Electrochim. Acta, Vol.8, p.751(1963).
13. R. de Levie, Electrochim. Acta, Vol.9, p.1231(1964).
14. J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison, “Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials”, Langmuir, Vol.15, pp.780-785(1999).
15. C. C. Hu, Y. H. Huang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors”, J. Electrochem. Soc., Vol.146, pp.2465-2471(1999).
16. S. Sarangapani, B. V. Tilak, C. P. Chen, “Materials for Electrochemical Capacitors Theoretical and Experimental Constraints”, J. Electrochem. Soc., Vol.143, pp.3791-3799(1996).
17. M. Ramani, B. S. Haran, R. E. White, B. N. Popov, “Synthesis and Characterization of Hydrous Ruthenium Oxide-Carbon Supercapacitors”, J. Electrochem. Soc., Vol.148, pp.A374-380 (2001).
18. D. A. McKeown, P. L. Hagans, L. P. L. Carette, A. E. Russell, K. E. Swider, D. R. Rolison, “Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage”, J. Phys. Chem. B. Vol.103, pp.4825-4832(1999).
19. S. Sarangapani, P. Lessner, J. Forchione, A. Griffith, and A. B. Laconti, “Advanced double layer capacitors”, J. Power Sources, Vol.29, pp.355-364(1990).
20. A. Barbu and V. plichon, “Voltammetry of thermally prepared ruthenium oxide films and flux detection at the electrolyte interface”, Electrochim. Acta, Vol.42, pp.489-492(1997).
21. T. C. Liu, W. G. Pell, and B. E. Conway, “Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes”, Electrochim. Acta, Vol.42, pp.3541-3552(1997).
22. S. L. Kuo and N. L. Wu, “Composite Supercapacitor Containing Tin Oxide and Electroplated Ruthenium Oxide”, Electrochem. Solid-State Lett., Vol.6, pp.A85-A87(2003).
23. B. O. Park, C. D. Lokhande, H. S. Park, K. D. Jung and O. S. Joo, “Electrodeposited ruthenium oxide films for electrochemical supercapacitors”, J. Mater. Sci., Vol.39 , pp.4313-4317(2004).
24. R. S. Chen, Y. S. Huang, Y. L. Chen and Y. Chi, “Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition”, Thin Solid Films, Vol.413, pp.85-91(2002).
25. P. Lu, S. He, F. X. Li and Q. X. Jia, “Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition”, Thin Solid Films, Vol.340 , pp.140-144(1999).
26. P. G. Ganesan, M. Eizenberg and C. Dornfest, “Chemical Vapor Deposited RuOx Films Effect of Oxygen Flow Rate”, J. Electrochem. Soc., Vol.149, pp.G510-G516(2002).
27. G. Battaglin, V. Rigato, S. Zandolin, A. Benedetti, S. Ferro, L. Nanni and A. de Battisti, “Microstructural Characterization and Electrochemical Properties of RuO2 Thin Film Electrodes Prepared by Reactive Radio-Frequency Magnetron Sputtering”, Chem. Mater., Vol.16, pp.946-952(2004).
28. J. H. Lim, D. J. Choi, H. K. Kim, W. I. Cho and Y. S. Yoon, “Thin Film Supercapacitors Using a Sputtered RuO2 Electrode”, J. Electrochem. Soc., Vol.148, pp.A275-A278(2001).
29. L. M. Doubova, S. Daolio and A. de Battisti, “Examination of RuO2 single-crystal surfaces: charge storage mechanism in H2SO4 aqueous solution”, J. Electroanal. Chem., Vol.532, pp.25-33(2002).
30. M. Tomkiewicz, Y. S. Huang and F. H. Pollak, “Potential of zero charge of oriented single-crystal RuO2 in aqueous electrolytes”, J. Electrochem. Soc., Vol.130, pp.1514-1518(1983).
31. W. E. O’Grady, A. K. Goel, F. H. Pollak, H. L. Park and Y. S. Huang, J. Electroanal. Chem., Vol.151, pp.295-303 (1983).
32. T. Hepel, F. H. Pollak and W. E. O’Grady, “Effect of Crystallographic Orientation of Single-Crystal RuO2 Electrodes on the Hydrogen Adsorption Reactions”, J. Electrochem. Soc., Vol.131, pp.2094-2100 (1984).
33. 余樹楨, “晶體之結構與性質”, 國立編譯館, 台北, 第280頁,民國七十八年。
34. A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard, ”Structure Studies of Rutile-Type Metal Dioxides”, Acta Cryst., B53, pp.373-380 (1997).
35. L. F. Mattheiss, ”Electronic structure of RuO2, OsO2, and IrO2”, Phys. Rev. B, vol.13, pp.2433-2450 (1976).
36. W. D. Ryden and A. W. Lawson, ”Electronic transport properties of IrO2 and RuO2”, Phys. Rev. B, vol.1, pp.1494-1500 (1970).
37. R. C. Weast (Ed.) Handbook and Chemistry and Physics, F146 (1989).
38. R. R. Daniels and G. Margaritiondo, “Electronic States of Rutile Dioxides”, Phys. Rev. B, vol.29, pp.1813-1818 (1984).
39. C. C. Chen, R. S. Chen, T. Y. Tsai, Y. S. Huang, D. S. Tsai and K. K. Tiong, “The growth and characterization of well aligned RuO2 nanorods on sapphire substrates”, J. Phys.: Condens. Matter., Vol.16, pp.8475-8484(2004).
40. Q. Wang, D. Gilmer, Y. Fan, A. Franciosi, D. F. Evans, W. L. Gladfelter and X. F. Zhang, “Microstructure of ruthenium dioxide films grown on a–Al2O3 (0001), a–Al2O3 (1 over-bar 102), and SrTiO3 (100) using reactivesputtering”, J. Mater. Res., Vol.12, pp.984-996 (1997).
41. Q. Wang, W. L. Gladfelter, D. F. Evans, Y. Fan and A. Franciosi, “Reactive-sputter deposition and structure of RuO2 films on sapphire and strontium titanate”, J. Vac. Sci. Technol. A, Vol.14, pp.747-752(1996).
42. S. Ardizzone, G. Fregonara and S. Trasatti, “'Inner' and 'outer' active surface of RuO2 electrodes”, Electrochim. Acta, Vol.35, pp.263-267 (1989).
43. F.-C. Wu, R.-L. Tseng, C.-C. Hu, C.-C. Wang, “Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors”, J. Power Sources, Vol.138, pp.351-359(2004).
44. Florence Fusalba, Naima El Mehdi, Livain Breau, and Daniel Be´langer, “Physicochemical and Electrochemical Characterization of Polycyclopenta[2,1-b;3,4-b']dithiophen-4-one as an Active Electrode for Electrochemical Supercapacitors”, Chem. Mater., Vol.11, pp.2743-2753(1999).

無法下載圖示
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2006/07/01 (國家圖書館:臺灣博碩士論文系統)
QR CODE