簡易檢索 / 詳目顯示

研究生: 廖英翔
Ying-Hsiang Liao
論文名稱: 0.18 μm CMOS 製程之低電壓壓控震盪器之研製
Design of Low Voltage Voltage-Controlled Oscillators in CMOS 0.18 μm Process
指導教授: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
口試委員: 黃柏仁
Bohr-Ran Huang
陳凰美
Hwan-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 104
中文關鍵詞: 低功耗壓控振盪器哈特萊壓控振盪器阿姆斯壯壓控振盪器
外文關鍵詞: Hartley VCO, Armstrong VCO
相關次數: 點閱:194下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統中,頻率合成器是用來做訊號頻率的升降之用。其中,壓控振盪器與除頻器更是頻率合成器電路裡的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。而壓控振盪器的輸出會經由除頻器降頻至與參考訊號相同的等級,與相位頻率偵測器做比較以校正壓控振盪器的輸出,故除頻器需要有高頻操作的能力。由於應用於無線通訊系統中,壓控振盪器與除頻器都必須要有低功耗的特性。
    本論文提出了共兩個壓控振盪器與一個除頻器電路。其一壓控振盪器是使用自我鎖定阿姆斯壯架構的振盪器。其二使用一n-型哈特來架構的壓控振盪器。以上電路使用台積電0.18微米CMOS製程來完成。
    首先,我們提出一個利用兩個單端阿姆斯壯震盪器,加上自我鎖定的特性來降低電路的相位雜訊。當控制電壓由0到2 V變化時,壓控振盪器的頻帶可由6.42 GHz調到7.58 GHz,而在頻帶輸出頻率7.45 GHz,所量測到的相位雜訊在1 MHz位移時為-110.9 dBc/Hz。
    其次,我們呈現一個使用n-型哈特來架構的震盪器,電壓從0V-0.8V為高頻帶,頻率可調範圍由6.36GHz至7.09GHz。由0.9V-2.0V時,低頻帶可調範圍由2.12GHz至2.32GHz。而在高頻帶與低頻帶在1 MHz位移所量測到的相位雜訊分別為-116.74 dBc/Hz與-124.71 dBc/Hz。


    In wireless communication system, frequency synthesizers are used to implement the frequency up/down converting of signal. In a frequency synthesizer, voltage-controlled oscillator (VCO) and frequency divider are the key blocks. For VCOs, low phase-noise output is required to avoid corrupting the mixer-converted signal by close interfering tones. The frequency of output signal of VCO is divided down to the level of reference signal, and is compared with reference signal by a phase frequency detector (PFD) to adjust the output of VCO. Therefore the dividers must have the ability of high frequency operation. Because of wireless application, both of them should operate at low power consumption.
    This thesis proposes two VCOs. The first VCO is a self-injection-locked Armstrong oscillator. The second is a Hartley type dual resonance oscillator. The above circuits are fabricated in the TSMC 0.18 μm CMOS process.
    Firstly, we propose an Armstrong voltage controlled oscillator using self-injection-locked technique. The oscillating frequency of the VCO can be tuned from 6.42 GHz to 7.58 GHz while the tuning voltage varies from 0 V to 2 V. The phase noise of the oscillation frequency at 7.45 GHz is -110.9 dBc/Hz at 1 MHz frequency offset.
    Secondly, we present an n-type Hartley oscillator with dual resonance. The high band tuning voltage varies from 0V to 0.8V, the oscillation frequency tuning range can be tuned from 6.36GHz to 7.09GHz; the low band tuning voltage is from 0.9V to 1.8V, and the tuning frequency ranges from 2.12GHz to 2.32GHz. The high band and low band each has a phase noise respectively of -116.74 dBc/Hz and -124.71 dBc/Hz at 1 MHz frequency offset.

    中文摘要 I Abstract III 致謝 V Contents VI List of Figures VIII List of Tables XII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 4 CHAPTER 2 OVERVIEWS OF OSCILLATORS AND INJECTION LOCKED PHENOMENON 6 2.1 INTRODUCTION 6 2.2 BASIC THEORY OF OSCILLATORS 8 2.2.1 ONE-PORT (NEGATIVE RESISTANCE) VIEW 9 2.2.2 TWO-PORT (FEEDBACK) VIEW 12 2.3 CLASSIFICATION OF OSCILLATORS 15 2.3.1 RESONATORLESS OSCILLATORS 15 I. RING OSCILLATOR 15 II. RELAXATION OSCILLATOR 17 2.3.2 LC-TANK OSCILLATORS 18 I. COLPITTS AND HARTLEY OSCILLATORS 18 II. NEGATIVE-GM OSCILLATORS 19 2.4 PARALLEL RLC TANK 20 2.4.1 RESISTORS 22 2.4.2 INDUCTOR AND TRANSFORMER 23 I. INDUCTOR 23 II. TRANSFORMER 32 2.4.3 CAPACITORS AND VARACTORS 42 I. CAPACITORS 42 II. MOSFET VARACTORS 44 2.5 DESIGN CONCEPTS OF VCOS 49 2.5.1 VCO CHARACTERISTIC PARAMETERS 50 2.5.2 PHASE NOISE IN OSCILLATORS 52 2.5.3 QUALITY FACTOR 60 2.5.4 Pulling in Oscillators 63 2.5.5 QUADRATURE VCO DESIGN 65 2.6 INJECTION LOCKED PHENOMENON 71 2.6.1 PRINCIPLE OF INJECTION LOCKING 72 2.6.2 OPERATION RANGE 74 CHAPTER 3 Low Power Self-Injection-Locked CMOS Armstrong Voltage-Controlled Oscillator 77 3.1 INTRODUCTION 77 3.2 CIRCUIT DESIGN 79 3.3 MEASUREMENT RESULTS 82 3.4 SUMMARY 86 CHAPTER 4 Low-Voltage Hartley CMOS Voltage-Controlled Oscillator with Dual-Resonance LC Tank 87 4.1 INTRODUCTION 87 4.2 CIRCUIT DESIGN 89 4.3 MEASUREMENT RESULTS 92 4.4 SUMMARY 97 CHAPTER 5 CONCLUSION 98 REFERENCES 100

    [1] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 810-820, May 1992.
    [2] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [3] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [6] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [7] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [8] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [9] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
    [10] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [11] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [12] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [13] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [14] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [15] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [16] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
    [17] J. Craninckx, and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 μm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, Jul. 1996.
    [18] Q. Huang, and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [19] J. Lee, and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [20] H. R. Rategh, and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, Jun. 1999.
    [21] H. D. Wohlmuth, and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sep. 2002.
    [22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 μm standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, Jun. 2001.
    [25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, Jul. 2002.
    [26] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [27] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 12, no. 12, pp. 1728–1736, Dec. 2002.
    [28] S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13µm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., pp. 404-406, June, 2009.
    [29] Y.-H. Chuang, S.-L Jang, S.-H. Lee, R.-H. Yen and J.-J. Jhao,” 5 GHz low power current-reused balanced CMOS differential Armstrong VCOs,” IEEE Microw. Wireless Compon. Lett., pp. 139-141, Feb. 2007.
    [30] S.-H. Lee, Y.-H. Chuang, S.-L. Jang and C.-C. Chen, ” Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., pp. 145-147, Feb. 2007.
    [31] S.-L. Jang and C.-F. Lee, “A low voltage and power LC VCO implemented with dynamic threshold voltage MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp.376–378, May 2007.
    [32] S.-L. Jang, C.-Jen Huang, C.-W. Hsue, and C.-W. Chang, ” A 0.3V cross-coupled VCO using dynamic threshold MOSFET,” IEEE Microw. Wireless Compon. Lett., pp. 166-168, March 2010.
    [33] K. C. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar. 2005.
    [34] T.-P. Wang, Z.-M. Tsai, K.-J. Sun, and H. Wang, “Phase noise reduction of X-band push-push oscillator with second-harmonic self-injection techniques,” IEEE Trans. Micro. Theory and Tech, vol. 55, no. 1, pp. 66-77, Jan. 2007
    [35] C.C. Boon, M. A. Do, K. S. Yeo, J. G. Ma, and X. L. Zhang, “RF CMOS low-phase-noise LC oscillator through memory reduction tail transistor,” IEEE J. Solid-State Circuits, Vol. 51, pp. 85-90, Feb 2004.
    [36] S. –J. Yu, C. –Y. Cha, H. –C. Choi, and S. –G. Lee, “RF CMOS LC-oscillator with source damping resistors,” IEEE Microwave Wireless Compon. Lett., vol. 16, no.9, pp. 511–513, Sept. 2006
    [37] B. Çatlı, and M. M. Hella, “A 1.94 to 2.55 GHz, 3.6 to 4.77 GHz tunable CMOS VCO based on double-tuned, double-driven coupled resonators” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2463- 2477 , Sep. 2009.
    [38] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [39] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K.Wu, B. J. Gross, and M. Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2005, pp. 416–417.
    [40] De Astis G., Cordeau D., Paillot J.-M., Dascalescu L., ” A 5-GHz fully integrated full PMOS low-phase-noise LC VCO,” IEEE J. Solid-State Circuits, vol. 40, No. 10, pp. 2087-2091, 2005.
    [41] Tzuen-Hsi Huang and Jay-Jen Hsueh, “5-GHz Low Phase-Noise CMOS VCO Integrated With a Micromachined Switchable Differential Inductor,” IEEE Microwave Wireless Compon. Lett., vol. 18, no 5, pp. 338-340, May 2008.

    [42] S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, ” Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., pp. 145-147, Feb. 2007.
    [43] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.
    [44] S.-L. Jang, Y.-K. Wu, C.-C. Liu, and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp. 816-818, Dec. 2009.
    [45] A. Goel and H. Hashemi, “Injection locking in concurrent dual-frequency oscillators concurrent dual-frequency oscillators and phase locked loops,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1846–1860, Aug. 2008.
    [46] S. J. Yun, C. Y. Cha, H. C. Choi, and, S. G. Lee, “RF CMOS LC-oscillator with source damping resistors,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 511-513, Sept 2006.
    [47] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with Switched Tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
    [48] L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8-V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
    [49] Y. Li, Y.-O. Jing, Y.-H. Shen, and Z.-S. Lai, “A stack-mode dual-band voltage-controlled oscillator multistandard wireless applications,” in ICSICT, Oct. 2006, pp. 1925-1927.
    [50] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
    [51] N.H.W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L.F. Wagner, C. Plett, and N.G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1333–1342, Aug. 2003.
    [52] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.

    無法下載圖示 全文公開日期 2015/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE