簡易檢索 / 詳目顯示

研究生: 曾品于
Pin-Yu Tseng
論文名稱: 巰基化幾丁聚醣衍生物之生物相容性研究
Biocompatibility of thiolated chitosan derivatives
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 邱顯堂
Hsien-Tang Chiu
周雄
Chi-Hsiung Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 幾丁聚醣四級銨鹽抗菌活性纖維母細胞
外文關鍵詞: Chitosan, Quaternary ammonium salts, Antibacterial activity, Fibroblast
相關次數: 點閱:504下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究由幾丁聚醣與N-環氧基-2,3-丙基-N-甲基-N,N-二烯丙基銨甲基磺酸化銨(N-epoxy-2-3-propyl-N-methyl-N-N-diallylammonium methylsulfate;MDAA)反應得到O-(2-羥基)丙基-3-甲基-二丙烯基銨幾丁聚醣磺酸化物(O-HDACS),再分別與3種巰基化合物反應而得巰基化幾丁聚醣衍生物(THIOCS),其目的是為了強化幾丁聚醣的抗菌性及生物相容性。所得之三種巰基化幾丁聚醣衍生物O-HDACS-MA、 O-HDACS-PA及O-HDACS-TA,以傅立葉轉換紅外光光譜儀(FT-IR)分析其分子結構;核磁共振分析儀(NMR)鑑定分子中化學官能基團的數目和種類;熱重分析儀(TGA)測試熱裂解溫度;介達電位(Zeta potential)分析幾丁聚醣及衍生物之電位性質;以DPPH測定其自由基抑制率;巰基化修飾率來判斷其接枝率;溶解度測定基本性質。並以金黃色葡萄球菌(Staphylococcus aureus)測試最小殺菌濃度(MBC)。另外用老鼠纖維母細胞(L929)測試其細胞成長活性與細胞毒性,期盼未來能應用於新型藥物釋放載體、傷口敷材及其他生醫領域。


    In order to improve the antibacterial activity and biocompatibility of chitosan, chitosan was reacted with N-epoxy-2, 3-propyl-N-methyl-N, N-diallyl ammonium methyl sulfate (MDAA) to form O-(2-hydroxyl) propyl-3-methyl-diallyl ammonium chitosan sulfonates (O-HDACS). Afterward, thiolated chitosan derivatives (THIOCS) were prepared by reacting O-HDACS with three kinds of mercapto compounds and resulted in three kinds of THIOCS (O-HDACS-MA, O-HDACS-PA and O-HDACS-TA). These THIOCS were characterized using Fourier transform infrared spectroscopy (FTIR) to determine the chemical structures, Nuclear magnetic resonance (NMR) to analysis the molecules’ chemical function group of number and type, Thermogravimetry Analysis (TGA) to measure their pyrolysis temperature, Zeta potential to determine their surface charges, DPPH to measure radical inhibition rate, thiolated modification rate to determine the grafting rate. The solubility in water is also measured. The antibacterial activity was evaluated by the minimum bactericidal concentration (MBC) against Staphylococus aureus (S. aureus). The cell proliferation and cytotoxicity were evaluated with mouse fibroblasts (L-929). The results showed these three THIOCS can be applied as drug delivery carriers, wound dressing materials, and other biomedical fields in the future.

    摘要 II Abstract III 圖索引 VIII 表索引 XI 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 幾丁聚醣簡介 4 2.1.1 幾丁聚醣特性 6 2.1.2 幾丁聚醣應用 7 2.1.3 幾丁聚醣抗菌原理 11 2.2 幾丁聚醣化學修飾 13 2.2.1 四級銨鹽 13 2.2.2 巰基化合物 14 2.3 微生物 16 2.3.1 細菌 17 2.3.2 細菌生長週期 18 2.3.3 細菌生長因素 19 2.3.4 金黃色葡萄球菌 21 2.3.5 肺炎桿菌 21 2.4 細胞 22 2.4.1 細胞結構 22 2.4.2 細胞生長週期 23 2.4.3 纖維母細胞性質 24 2.4.4 細胞貼附 24 第三章 實驗步驟 26 3.1 實驗藥品 26 3.2 實驗儀器 28 3.3 實驗流程 29 3.4 藥品製備 30 3.4.1 製備四級銨鹽化合物 30 3.4.2 製備O-(2-羥基)丙基-3-甲基-二丙烯基銨幾丁聚醣 31 3.4.3 製備巰基化幾丁聚醣衍生物 33 3.5 基本性質 35 3.5.1 傅立葉紅外線光譜分析(FT-IR) 35 3.5.2 核磁共振光譜儀(1H-NMR) 35 3.5.3 熱重分析(TGA) 35 3.5.4 Zeta Potential分析 36 3.5.5 DPPH自由基清除能力測定 36 3.5.6 幾丁聚醣巰基化修飾率測定 37 3.5.7 溶解度測定 37 3.6 抗菌實驗 38 3.6.1 抗菌活性之計算 38 3.6.2 抗菌活性 38 3.7 細胞相容性測試 40 3.7.1 細胞活化 40 3.7.2 細胞繼代 40 3.7.3 纖維母細胞於幾丁聚醣衍生物溶液中培養 41 3.7.4 細胞增生實驗(MTT assay) 41 第四章 結果與討論 42 4.1 傅立葉紅外線光譜分析(FT-IR) 42 4.2 核磁共振分析(NMR) 44 4.3 熱重分析(TGA) 45 4.4 Zeta potential 測定 48 4.5 DPPH自由基清除能力測定 50 4.6 幾丁聚醣巰基化修飾率測定 52 4.7 巰基化幾丁聚醣衍生物溶解度測定 54 4.8 抗菌實驗 57 4.9 生物相容性試驗 59 4.9.1 細胞型態觀察 59 4.9.2 細胞增生實驗(MTT assay) 66 第五章 結論 68 第六章 參考文獻 69

    [1] 劉士榮 and 高宜娟, 生醫材料: 滄海, 2010.
    [2] 洪嘉駿, "雙陽離子幾丁聚醣衍生物細胞相容性之研究," 台灣科技大學材料科學與工程所碩士論文, 2014.
    [3] A. Lendlein and A. Sisson, Handbook of Biodegradable Polymers: Isolation, Synthesis, Characterization and Applications: John Wiley & Sons, 2011.
    [4] 林峰輝, 白育綸, 俞耀庭, and 張興棟, "生物醫用材料," 新北市. 新文京開發出版股份有限公司, 2004.
    [5] R. Minke and J. Blackwell, "The structure of α-chitin," Journal of molecular biology, vol. 120, pp. 167-181, 1978.
    [6] M. Rinaudo, "Chitin and chitosan: properties and applications," Progress in polymer science, vol. 31, pp. 603-632, 2006.
    [7] R. A. Muzzarelli, G. Barontini, and R. Rochetti, "Isolation of lysozyme on chitosan," Biotechnology and bioengineering, vol. 20, pp. 87-94, 1978.
    [8] S.-i. Aiba, "Studies on chitosan: 4. Lysozymic hydrolysis of partially N-acetylated chitosans," International journal of biological macromolecules, vol. 14, pp. 225-228, 1992.
    [9] D. Knorr, "Use of chitinous polymers in food: A challenge for food research and development," Food Technology (USA), 1984.
    [10] M. Rinaudo and A. Domard, "Solution properties of chitosan," Chitin and chitosan, pp. 71-86, 1989.
    [11] L. Filar and M. Wirick, "Bulk and solution properties of chitosan," in Proceedings of the first international conference on chitin/chitosan. Mass.: MIT Sea Grant Program. p, 1978, pp. 169-81.
    [12] C. Kienzle-Sterzer, D. Rodriguez-Sanchez, and C. Rha, "Solution properties of chitosan: Chain conformation," in Chitin, chitosan and related enzymes;Academic Press Orlando, FL ed: Academic Press Orlando, FL, 1984, pp. 383-393.
    [13] B. Launay, J. Doublier, and G. Cuvelier, "Flow properties of aqueous solutions and dispersions of polysaccharides," Functional properties of food macromolecules/edited by JR Mitchell and DA Ledward, 1985.
    [14] A. Gamzazade, A. Sklyar, S.-S. Pavlova, and S. Rogozhin, "On the viscosity properties of chitosan solutions," Polymer Science USSR, vol. 23, pp. 665-669, 1981.
    [15] R. Muzzarelli, S. Aiba, Y. Fujiwara, T. Hideshima, C. Hwang, M. Kakizaki, et al., "Filmogenic properties of chitin/chitosan," in Chitin in nature and technology;Springer, ed: Springer, 1986, pp. 389-402.
    [16] 陳榮輝, "幾丁質, 幾丁聚醣的生產製造, 檢測與應用," National Science Council Monthiy, vol. 29, pp. 776-787, 2001.
    [17] S. Hirano and Y. Noishiki, "The blood compatibility of chitosan and N‐acylchitosans," Journal of biomedical materials research, vol. 19, pp. 413-417, 1985.
    [18] R. Jayakumar, M. Prabaharan, P. S. Kumar, S. Nair, and H. Tamura, "Biomaterials based on chitin and chitosan in wound dressing applications," Biotechnology advances, vol. 29, pp. 322-337, 2011.
    [19] S. Puttipipatkhachorn, J. Nunthanid, K. Yamamoto, and G. Peck, "Drug physical state and drug–polymer interaction on drug release from chitosan matrix films," Journal of Controlled Release, vol. 75, pp. 143-153, 2001.
    [20] A. Sezer and J. Akbuǧa, "Controlled release of piroxicam from chitosan beads," International journal of pharmaceutics, vol. 121, pp. 113-116, 1995.
    [21] H. Tan, R. Ma, C. Lin, Z. Liu, and T. Tang, "Quaternized chitosan as an antimicrobial agent: Antimicrobial activity, mechanism of action and biomedical applications in orthopedics," International journal of molecular sciences, vol. 14, pp. 1854-1869, 2013.
    [22] P. Darmadji and M. Izumimoto, "Effect of chitosan in meat preservation," Meat Science, vol. 38, pp. 243-254, 1994.
    [23] G. I. Howling, P. W. Dettmar, P. A. Goddard, F. C. Hampson, M. Dornish, and E. J. Wood, "The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro," Biomaterials, vol. 22, pp. 2959-2966, 2001.
    [24] P. R. Klokkevold, H. Fukayama, E. C. Sung, and C. N. Bertolami, "The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits," Journal of oral and maxillofacial surgery, vol. 57, pp. 49-52, 1999.
    [25] 黃怡菁, "生體高分子-生物科技的新契機," 食品資訊, 1999, pp. 47-47.
    [26] 曾厚, "Chitin 及 Chitosan 應用及其發展現況," 生物產業, vol. 第八卷, pp. 102-108, 2000.
    [27] T. Tanigawa, Y. Tanaka, H. Sashiwa, H. Saimoto, and Y. Shigemasa, "Various biological effects of chitin derivatives," Advances in chitin and chitosan, vol. 206, 1992.
    [28] J. Leuba and P. Stossel, "Chitosan and other polyamines: antifungal activity and interaction with biological membranes," in Chitin in nature and technology;Springer, ed: Springer, 1986, pp. 215-222.
    [29] A. M. Papineau, D. G. Hoover, D. Knorr, and D. F. Farkas, "Antimicrobial effect of water‐soluble chitosans with high hydrostatic pressure," Food Biotechnology, vol. 5, pp. 45-57, 1991.
    [30] Z. Jia and W. Xu, "Synthesis and antibacterial activities of quaternary ammonium salt of chitosan," Carbohydrate research, vol. 333, pp. 1-6, 2001.
    [31] V. A. Spinelli, M. C. Laranjeira, and V. T. Fávere, "Preparation and characterization of quaternary chitosan salt: adsorption equilibrium of chromium (VI) ion," Reactive and Functional Polymers, vol. 61, pp. 347-352, 2004.
    [32] S. C. Tan, E. Khor, T. K. Tan, and S. M. Wong, "The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination," Talanta, vol. 45, pp. 713-719, 1998.
    [33] L. Hadwiger, D. Kendra, B. Fristensky, and W. Wagoner, "Chitosan both activates genes in plants and inhibits RNA synthesis in fungi," in Chitin in nature and technology;Springer, ed: Springer, 1986, pp. 209-214.
    [34] M. G. Peter, "Applications and environmental aspects of chitin and chitosan," Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, vol. 32, pp. 629-640, 1995.
    [35] G. Kumar, J. Bristow, P. Smith, and G. Payne, "Enzymatic gelation of the natural polymer chitosan," Polymer, vol. 41, pp. 2157-2168, 2000.
    [36] R. A. Muzzarelli and F. Tanfani, "The N-permethylation of chitosan and the preparation of N-trimethyl chitosan iodide," Carbohydrate Polymers, vol. 5, pp. 297-307, 1985.
    [37] O. Rahn and W. P. Van Eseltine, "Quaternary ammonium compounds," Annual Reviews in Microbiology, vol. 1, pp. 173-192, 1947.
    [38] S. Przestalski, J. Sarapuk, H. Kleszczyńska, J. Gabrielska, J. Hladyszowski, Z. Trela, et al., "Influence of amphiphilic compounds on membranes," Acta Biochimica Polonica, vol. 47, pp. 627-638, 1999.
    [39] P. D'Arcy and E. Taylor, "QUATERNARY AMMONIUM COMPOUNDS IN MEDICINAL CHEMISTRY. I*," Journal of Pharmacy and Pharmacology, vol. 14, pp. 129-146, 1962.
    [40] S. Wilson and G. Georgiadis, "MERCAPTANS FROM THIOKETALS-CYCLODODECYL MERCAPTAN," ORGANIC SYNTHESES, vol. 61, pp. 74-77, 1983.
    [41] E. Jones and I. Moodie, "2‐Thiophenethiol," Organic Syntheses, pp. 104-104, 1970.
    [42] A. Akhmadullina, B. Kizhaev, G. Nurgalieva, I. Khrushcheva, A. Shabaeva, S. Tugushi, et al., "Heterogeneous catalytic demercaptization of light hydrocarbon feedstock," Chemistry and Technology of Fuels and Oils, vol. 29, pp. 108-109, 1993.
    [43] J. Reece, L. A. Urry, N. Meyers, M. L. Cain, S. A. Wasserman, P. V. Minorsky, et al., Campbell biology: Pearson Higher Education AU, 2011.
    [44] A. M. Palazzolo-Ballance, M. L. Reniere, K. R. Braughton, D. E. Sturdevant, M. Otto, B. N. Kreiswirth, E. P. Skaar and F. R. DeLeo, "Neutrophil microbicides induce a pathogen survival response in community-associated methicillin-resistant Staphylococcus aureus," The Journal of Immunology, vol. 180, pp. 500-509, 2008.
    [45] 王貴譽 and 張瑞烽, "物理滅菌法," in 大學微生物學, ed: 大學微生物學.
    [46] M. L. Smith and A. J. Fornace, "Mammalian DNA damage-inducible genes associated with growth arrest and apoptosis," Mutation Research/Reviews in Genetic Toxicology, vol. 340, pp. 109-124, 1996.
    [47] R. J. Reynolds and J. A. Schecker, "Radiation, cell cycle, and cancer," Los Alamos Science, vol. 23, pp. 51-89, 1995.
    [48] 尹書翊, "透明質酸於膠原蛋白基質上促進纖維母細胞爬行之機制研究," 成功大學生物科技研究所碩士論文, pp. 1-69, 2004.
    [49] K. Anselme, "Osteoblast adhesion on biomaterials," Biomaterials, vol. 21, pp. 667-681, 2000.
    [50] C. Chatelet, O. Damour, and A. Domard, "Influence of the degree of acetylation on some biological properties of chitosan films," Biomaterials, vol. 22, pp. 261-268, 2001.
    [51] 王建文, "糖反應幾丁聚醣/聚乙二醇生醫可降解性高分子之製備與生物評估," 成功大學材料科學及工程學系博士論文, pp. 1-163, 2004.
    [52] J. C. Chen, J. T. Yeh, and C. C. Chen, "Crosslinking of cotton cellulose in the presence of alkyl diallyl ammonium salts. I. Physical properties and agent distribution," Journal of applied polymer science, vol. 90, pp. 1662-1669, 2003.
    [53] C. Zhang, Q. Ping, H. Zhang, and J. Shen, "Synthesis and characterization of water-soluble O-succinyl-chitosan," European Polymer Journal, vol. 39, pp. 1629-1634, 2003.
    [54] C. Müller, B. N. Ma, R. Gust, and A. Bernkop-Schnürch, "Thiopyrazole preactivated chitosan: combining mucoadhesion and drug delivery," Acta biomaterialia, vol. 9, pp. 6585-6593, 2013.
    [55] L. Yin, J. Ding, C. He, L. Cui, C. Tang, and C. Yin, "Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery," Biomaterials, vol. 30, pp. 5691-5700, 2009.
    [56] K. Juntapram, N. Praphairaksit, K. Siraleartmukul, and N. Muangsin, "Synthesis and characterization of chitosan-homocysteine thiolactone as a mucoadhesive polymer," Carbohydrate Polymers, vol. 87, pp. 2399-2408, 2012.
    [57] V. L. Singleton and J. A. Rossi, "Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents," American journal of Enology and Viticulture, vol. 16, pp. 144-158, 1965.
    [58] T. Pengpong, P. Sangvanich, K. Sirilertmukul, and N. Muangsin, "Design, synthesis and in vitro evaluation of mucoadhesive p-coumarate-thiolated-chitosan as a hydrophobic drug carriers," European Journal of Pharmaceutics and Biopharmaceutics, vol. 86, pp. 487-497, 2014.
    [59] T. Chivangkul, S. Pengprecha, P. Padungros, K. Siraleartmukul, S. Prasongsuk, and N. Muangsin, "Enhanced water-solubility and mucoadhesion of N, N, N-trimethyl-N-gluconate-N-homocysteine thiolactone chitosan," Carbohydrate polymers, vol. 108, pp. 224-231, 2014.
    [60] B. Han, Y. Wei, X. Jia, J. Xu, and G. Li, "Correlation of the structure, properties, and antimicrobial activity of a soluble thiolated chitosan derivative," Journal of Applied Polymer Science, vol. 125, pp. E143-E148, 2012.
    [61] C. Peniche, W. Argüelles-Monal, N. Davidenko, R. Sastre, A. Gallardo, and J. San Román, "Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation," Biomaterials, vol. 20, pp. 1869-1878, 1999.
    [62] 蔡欣穎, "交聯幾丁聚醣/分子篩複合膜應用於乙醇脫水之探討," 成功大學化學工程學系碩士論文, pp. 1-77, 2008.
    [63] K. Berger and A. Gregorova, "Thermal stability of modified end‐capped poly (lactic acid)," Journal of Applied Polymer Science, vol. 131, 2014.
    [64] 張家誠, "氧化鋅奈米粒子之光致螢光性質研究," 中央大學材料科學與工程研究所碩士論文, 2007.
    [65] A. K. Anal, A. Tobiassen, J. Flanagan, and H. Singh, "Preparation and characterization of nanoparticles formed by chitosan–caseinate interactions," Colloids and Surfaces B: Biointerfaces, vol. 64, pp. 104-110, 2008.
    [66] B. Lu, X. Liu, Z. Huang, H. Xu, P. Xu, Y. Wang, et al., "Synthesis of diamine maleyl chitosans, and in vitro transfection studies," Carbohydrate Polymers, vol. 87, pp. 1453-1459, 2012.
    [67] I. Afanas’ev, "Signaling and damaging functions of free radicals in aging—free radical theory, hormesis, and TOR," Aging and disease, vol. 1, p. 75, 2010.
    [68] J. Sedlak and R. H. Lindsay, "Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent," Analytical biochemistry, vol. 25, pp. 192-205, 1968.
    [69] C. K. Riener, G. Kada, and H. J. Gruber, "Quick measurement of protein sulfhydryls with Ellman's reagent and with 4, 4′-dithiodipyridine," Analytical and bioanalytical chemistry, vol. 373, pp. 266-276, 2002.
    [70] H. B. Collier, "A note on the molar absorptivity of reduced Ellman's reagent, 3-carboxylato-4-nitrothiophenolate," Analytical biochemistry, vol. 56, pp. 310-311, 1973.
    [71] W.-L. Du, S.-S. Niu, Y.-L. Xu, Z.-R. Xu, and C.-L. Fan, "Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions," Carbohydrate Polymers, vol. 75, pp. 385-389, 2009.

    無法下載圖示 全文公開日期 2020/06/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE