簡易檢索 / 詳目顯示

研究生: 黃子謙
TZU-CHIEN HUANG
論文名稱: Fe-20 Ni-15 Mn-4.5 Al合金鋼的相變化研究
The study of phase transformations in an Fe-20 Ni-15 Mn-4.5 Al steel
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 143
中文關鍵詞: 鐵鎳錳鋁合金鋼spinodal相分離有序化反應B2相κ-碳化物M3C碳化物M23C6碳化物層狀組織
外文關鍵詞: Fe-Mn-Ni-Al steel, spinodal decomposition, ordering reaction, B2 phase, κ-carbide, M3C carbide, M23C6 carbide, lamellar structure
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著時代進步與科技發展,對於先進合金鋼材料的需求日益增加,其中對具有高比強度合金鋼的需求是越來越大,而鐵鎳錳鋁系合金鋼具有優異的比強度性質,並具有耐腐蝕的特性,是具有廣闊的應用前景。本論文研究五元Fe-20 Ni-15 Mn-4.5 Al-0.5 C (wt.%)合金,經高溫1100°C固溶處理以及恆溫處理後的顯微組織與結晶結構變化。本合金鋼於1100°C為單一沃斯田體相(γ),經1100°C固溶處理的沃斯田體相發生spinodal相分離,形成低溶質的γ′相與高溶質的γ″相,其反應式為γ → γ′ + γ′′;於恆溫處理後合金的相變化如下:於1000°C至450°C恆溫處理後,於基地γ相的晶界處以及晶粒內有富鎳鋁B2相的析出,其反應式為:γ → γ1 + B2,且B2相與基地沃斯田體有[011]γ // [¯111]B2以及(11¯1)γ // (01¯1)B2的K-S方位關係。於850°C至575°C恆溫處理經析出相變化有富鐵錳相之碳化物(M3C或為M23C6)的析出,反應式:γ → γ1 + B2 + 碳化物。經1100°C固溶處理的沃斯田體相發生spinodal相分離後所形成的含高溶質的γ″相於550°C以下溫度的恆溫處理會發生有序化反應轉變為整合型析出之κ-碳化物,反應式為γ → γ′ + γ′′ → γ′ + κ-碳化物。本合金於550°C至450°C有層狀組織的出現。


Demand for advanced steel materials has increased as science and technology advance, particularly for high specific strength alloy steel. The Fe-Ni-Mn-Al alloy system has excellent mechanical properties and corrosion resistance, and hence has a broad application prospect. In this study, the phase transformation of an Fe-Ni-Mn-Al alloy of the composition Fe-20 Ni-15 Mn-4.5 Al-0.5 C (wt. percent) was studied after solution treatment and isothermal treatment at 1100°C by observing and analyzing the microstructural and crystal structure changes. At 1100°C, the alloy consists of a single phase of austenite (γ). After solution treatment at 1100°C, the austenite decomposed into solute lean (γ') and solute enriched (γ'') via spinodal decomposition. After isothermal treatment at 1000°C to 450°C, nickel-aluminum rich B2 phase formed at the grain boundaries of γ matrix, and the reaction is γ → γ1+ B2. The Kurdjumov-Sachs (K-S) orientation relationship between the B2 and austenitic phases is [011]γ // [¯111]B2 and (11¯1)γ // (01¯1)B2. Precipitation of iron-manganese rich carbides (M3C or M23C6) phase was observed after isothermal treatment at 850°C to 575°C., and the reaction is γ → γ1 + B2 + carbide. The solute enriched (γ'') transformed to κ - carbides by ordering reaction during isothermal treatment at 550°C to 450°C, the overall reaction is γ → γ' + γ''→ γ'+ κ - carbides. At 550°C to 450°C, formation of lamellar structure was also observed.

摘 要 I Abstract II 誌 謝 III 表目錄 V 圖目錄 VII 第一章 序 論 1 第二章 文獻回顧 3 2.1鐵鎳錳鋁碳合金鋼之發展與介紹 3 2.2擴散型相變化 5 2.3合金鋼中的碳化物與波來體 12 第三章 實驗方法 30 3.1合金熔鑄與加工 30 3.2熱處理 32 3.3試片製備與儀器分析 32 第四章 結果與討論 43 4.1固溶處理 44 4.2恆溫處理 45 4.2.1沃斯田體與B2相 46 4.2.2碳化物 51 4.2.3層狀組織與κ-碳化物 57 第五章 結 論 113 參考文獻 115

[1] H. Kim, , D.W. Suh, , and N.J. Kim, Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties, Science and technology of advanced materials, 2013.
[2] D.W. Suh and N.J. Kim, Low-density steels. Scripta Materialia, 2013, 68, 337-338.
[3] A. Zargaran, H.S. Kim, J.H. Kwak, and N.J. Kim, Effects of Nb and C additions on the microstructure and tensile properties of lightweight ferritic Fe-8Al-5Mn alloy, Scripta Materialia, 2014, 89, 37-40.
[4] Y. Sutou, N. Kamiya, R. Umino, L. Ohnuma, and K. Ishida, High strength Fe-20Mn-Al-C-based alloys with low density. ISIJ International, 2010, 50, 893-899.
[5] G. Frommeyer, and U. Brüx, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Research International, 2006, 77, 627-633.
[6] R.A. Rijkenberg, A. Blowey, P. Bellina, and C. Wooffindin, Advanced High Stretch-Flange Formability Steels for Chassis and Suspension Applications 3. Product concept:tensile properties and microstructure, 4th International Conference on Steels in Cars and Trucks, June, Braunschweig, Germany, 2014, 15-19.
[7] I. Zuazo, B. Hallstedt, B. Lindahl, M. Selleby, M. Soler, A. Etienne, A. Perlade, D. Hasenpouth, V. Massardier-Jourdan, S. Cazottes and X. Kleber, Low-Density Steels:Complex Metallurgy for Automotive Applications, JOM, 2014, 66, 1747-1758.
[8] H. Springer, and D. Raabe, Rapid alloy prototyping:Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels, Acta Mater, 2012, 60, 4950-4959.
[9] G. Frommeyer, E.J. Drewes, and B. Engl, Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev,
Métallurgie-International J. Metall, 2000, 97, 1245-1253.
[10] I. Gutierrez-Urrutia, and D. Raabe, High strength and ductile low density austenitic FeMnAlC steels:Simplex and alloys strengthened by nanoscale ordered carbides, Mater. Sci. Technol. 2014, 30, 1099-1104.
[11] I. Gutierrez-Urrutia, and D. Raabe, Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels. Scripta Materialia, 2013, 68, 343-347.
[12] M.J. Yao, P. Dey, J.B. Seol, P. Choi, M.Herbig, R.K.W. Marceau, T. Hickel, J. Neugebauer, D. Raabe, Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe-Mn-Al-C low density steel, Acta Mater, 2016, 229-238.
[13] S.J. Park, B. Hwang, K.H. Lee, T.H. Lee, D.W. Suh, H.N. Han, Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum, Scr. Mater, 2013, 68, 365-369.
[14] S.H. Kim, H. Kim , and N.J. Kim, Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature, 2015, 518, 77-79.
[15] M. Piston, L. Bartlett, K.R. Limmer, & D.M. Field, Microstructural Influence on Mechanical Properties of a Lightweight Ultrahigh Strength Fe-18Mn-10Al-0.9C-5Ni (wt%) Steel. Metals, 2020,. 10(10), 1305.
[16] R.G. Davies, Influence of martensite composition and content on the properties of dual phase steels. Metallurgical Transactions A, 1978, 9, 671-679.
[17] C. Thomser, V. Uthaisangsuk, and W. Bleck, Influence of martensite distribution on the mechanical properties of dual phase steels:Experiments and simulation. Steel Research International 2009, 80, 582-587.
[18] Porter, D.A., Easterling, K.E., Sherif, M.Y., Phase Transformations in Metals and Alloys, 2008, 3rd edition.
[19] A. Inoue, Y. Kojima, T. Minemura, T. Masumoto, Microstructure and mechanical properties of ductile Ni3AI-type compound in Fe-(Ni, Mn)-AI-C systems rapidly quenched from melts, Metall. Trans. A, 1981, 12A, 1245-1253.
[20] K. Gschneidner Jr., A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C.H. Chester lo, Y. Ye, A. Slager, D. Kesse, A family of ductile intermetallic compounds, Nat. Mater, 2003, 2, 587-591.
[21] N.S. Stoloff, C.T. Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics 2000, 8, 1313-1320.
[22] H.K.D.H. Bhadeshia, Computational design of advanced steels, Scr. Mater. 2014, 70, 12-17.
[23] S.S. Sohn, B.J. Lee, S. Lee, and J. H. Kwak, Microstructural analysis of cracking phenomenon occurring during cold rolling of (0.1-0.7)C-3Mn-5Al lightweight steels. Met. Mater. Int, 2015, 21(1), 43-53.
[24] R. Rana, C. Liu, R.K. Ray, Evolution of microstructure and mechanical properties during thermomechanical processing of a low-density multiphase steel for automotive application, Acta Mater, 2014, 75 227-245.
[25] Y.U. Heo, Y.Y. Song, S.J. Park, H.K.D.H. Bhadeshia, D.W. Suh, Influence of silicon in low density Fe-C-Mn-Al steel, Metall. Mater. Trans. A, 2012, 43(6), 1731-1735.
[26] R.A. Howell, T. Weerasooriya, D.C. Van Aken, Tensile high strain rate compression and microstructural evaluation of lightweight age hardenable cast Fe-3Mn-9Al-xSi-0.9C-0.5Mo steel, Int. J. Met, 2010, 4, 7-18.
[27] X.F. Zhang, H. Yang, D.P. Leng, L. Zhang, Z.Y. Huang, G. Chen, Tensile deformation behaviour of Fe-Mn-Al-C low density steels, J. Iron Steel Res. Int, 2016, 23, 963-972.
[28] M.C. Ha, J. Koo, J. Lee, S.W. Hwang, K. Park, Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature, Mater. Sci. Eng. A, 2013, 586, 276-283.
[29] K. Lee, S.-J. Park, J. Moon, J.-Y. Kang, T.-H. Lee, H.N. Han, β-Mn formation and aging effect on the fracture behaviour of high-Mn low-density steels, Scr. Mater, 2016, 124, 193-197.
[30] S.C. Tjong, Electron microscope observations of phase decompositions in an austenitic Fe-8.7 Al-29.7 Mn-1.04 C alloy, Materials Characterization, 1990, 24(3), 275-292.
[31] C.Y. Chao, C.H. Liu, Effects of Mn contents on the microstructure and mechanical properties of the Fe-10Al-xMn-1.0C alloy, Mater. Trans, 2002, 43, 2635-2642.
[32] W.K. Choo, K.H. Han, Phase constitution and lattice parameter relationships in rapidly solidified (Fe0.65Mn0.35)0.83Al0.17-Xc and Fe3AlxC pseudo-binary alloys, Metall. Trans. A, 1985, 16, 5-10.
[33] K. Sato, K. Tagawa, Y. Inoue, Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metall. Trans. A 1990, 21, 5-11.
[34] C.C. Wu, J.S. Chou, T.F. Liu, Phase transformation in an Fe-10.1Al-28.6Mn0.46C alloy, Metall. Mater. Trans. A, 1991, 22, 2265-2276.
[35] J. Herrmann, G. Inden, G. Sauthoff, Deformation behaviour of iron-rich ironaluminium alloys at low temperatures, Acta Mater, 2003, 51 2847-2857.
[36] R. Oshima, C. Wayman, Fine structure in quenched Fe-Al-C steels, Metall. Trans, 1972, 3, 2163-2169.
[37] W.J. Lu, R.S. Qin, Influence of k-carbide interface structure on the formability of lightweight steels, Mater. Des, 2016, 104, 211-216.
[38] R. Honeycombe, W. K. and R. F. Mehl, Transformation from austenite in alloy steels, Metallurgical Transactions A, 1976, 7(7), 915-936.
[39] K.H. Hwang, C.M. Wan and J.G. Byrne, Phase transformation in a duplex Fe-Mn-Al-C alloy, Mat. Sci. Eng. A, 1991, 132, 161.
[40] W.C. Cheng and H.Y. Lin, The precipitation of FCC phase from BCC matrix in an Fe–Mn–Al alloy, Mat. Sci. Eng. A, 2002, 323,462.
[41] S.K. Chen, K.W. Chour, W.B. Lee, C.M. Wan and J.G. Byrne, Mat. Res. Bull, The formation of bcc phase during the solution treatment of duplex Fe-Mn-Al-C alloys, Materials research bulletin, 1990, 25, 1115.
[42] W.C. Cheng, Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 2005, 36, 1737-1743.
[43] C.J. Wang, and Y.C. Chang, NaCl-induced hot corrosion of Fe-Mn-Al-C alloys, Mater. Chem. Phys. 2002, 76, 151-161.
[44] S. Chen, R. Rana, A. Haldar, and R.K. Ray, Current state of Fe-Mn-Al-C low density steels, Progress in Materials Science, 2017, 89, 345-391.
[45] L.M. Kaputkina, A.G. Svyazhin, I.V. Smarygina, and V.E Kindop, Light Non-Magnetic Steels Based on the Fe–25 Mn–5 Ni–Al–C System, Steel Transl. 2020, 50, 22–30.
[46] K.H. Hwang, C.M. Wan, and J.G. Byrne, Phase transformation in a duplex FeMnAlC alloy, Mater. Sci. Eng. A, 1991, 132, 161-169.
[47] W.C. Cheng, and H.Y. Lin, The precipitation of FCC phase from BCC matrix in an Fe-Mn-Al alloy, Mater. Sci. Eng. A, 2002, 323, 462-466.
[48] S.K. Chen, K.W. Chour, W.B. Lee, C.M. Wan, and J.G. Byrne, The formation of bcc phase during the solution treatment of duplex FeMnAlC alloys, Mater. Res. Bull, 1990, 25, 1115-1119.
[49] Y.Z. Ji, A. Issa, T.W. Heo, J.E. Saal, C. Wolverton, L.Q. Chen, Predicting β′ precipitate morphology and evolution in Mg-RE alloys using a combination of first-principles calculations and phase-field modeling, Acta Mater, 2014, 76, 259-271.
[50] C.L. Lin, C.G. Chao, J.Y. Juang, , J.M. Yang, and T.F. Liu, Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy, J. Alloys Compd, 2014, 586, 616-620.
[51] M.C. Li, H. Chang, P.W. Kao, and D. Gan, The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe-Mn-Al-C alloys. Materials chemistry and physics, 1999, 59(1), 96-99.
[52] W.C. Cheng, C.Y. Cheng, C.W. Hsu, and D.E. Laughlin, Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe–C–Mn–Al austenitic steel. Materials Science and Engineering: A, 2015, 642, 128-135.
[53] J.B. Seol, D. Raabe, P. Choi, H.S. Park, J.H. Kwak, and C.G. Park, Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe-Mn-Al-C alloy studied by transmission electron microscopy and atom probe tomography. Scr. Mater, 2013, 68, 348-353.
[54] A. Rahnama, R. Dashwood, and S. Sridhar, A phase-field method coupled with CALPHAD for the simulation of ordered ordered k-cabide precipitates in both disorered gamman and alpha phases in low density steel, Comput. Mater. Sci, 2017, 126, 152-159.

[55] A. Rahnama, H. Kotadia, S. Clark, et al. Nano-mechanical properties of Fe-Mn-Al-C lightweight steels, Sci Rep, 2018, 8(1), 1-12.
[56] H. Huang, D. Gan, and P.W. Kao, Effect of alloying additions on the kappa phase precipitation in austenitic Fe-Mn-Al-C alloys, Scripta Metallurgica et Materialia, 1994, 30(4).
[57] A. Kwiatkowski da Silva, D. Ponge, Z. Peng, G. Inden, Y. Lu, A. Breen, B. Gault and D. Raabe, Phase nucleation through confined spinodal fluctuations at crystal defects evidenced in Fe-Mn alloys, Nature communications, 2018, 9(1), 1-11.
[58] K.A. Taylor, , L.I. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and Vander J.B. Sande, Spinodal decomposition during aging of Fe-Ni-C martensites, Metallurgical Transactions A, 1989, 20.12, 2717-2737.
[59] C.N. Hwang, and T.F. Liu, Grain boundary precipitation reactions in a wrought Fe-8Al-5Ni-2C alloy prepared by the conventional ingot process, METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1998, 29(2), 693-696.
[60] W.A. Soffa, and D.E. Laughlin, Decomposition and ordering processes involving thermodynamically first-order order→disorder transformations, Acta Metall, 1989, 37, 3019-3028.
[61] J.W. Cahn, On spinodal decomposition in cubic crystals, Acta Metall, 1962, 10, 179-183.
[62] A.J. Porter, and A.W. Thompson, On the mechanism of precipitation strengthening in Cu-z. sbnd; Ti alloys, Scr. Metall, 1984, 18, 1185-1188.
[63] W.A. Soffa, and D.E. Laughlin, High-strength age hardening copper-titanium alloys:redivivus. Prog. Mater. Sci, 2004, 49, 347-366.
[64] After R.E. Smallman, Modern Physical Metallurgy, 3rd edition, Butterworths, London, 1970.
[65] I. Chumak, K.W. Richter, H. Ipser, Isothermal sections in the (Fe, Ni)-rich part of the Fe-Ni-Al phase diagram, J. Phase Equil. Diffus, 2008, 29, 300-304.
[66] J.A. Hanna, I. Baker, M.W. Wittmann, and P.R. Munroe, A new high-strength spinodal alloy, Journal of materials research, 2005, 20(4), 791-795.
[67] G. Frommeyer, U. Brux, Microstructures and mechanical properties of high strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Res. Int, 2006, 77, 627-633.
[68] I.S. Edwin, A. Bhowmik, R.S. Qin, Accelerated spheroidization Induced by high Intensity electric pulse in a severely deformed eutectoid steel, J. Mater. Res, 2010, 25, 1020-1024.
[69] Z.B. Jiao, J.H. Luan, M.K. Miller, C.T. Liu, Precipitation mechanism and mechanical properties of an ultra-high strength steel hardened by nanoscale NiAl and Cu particles, Acta Mater, 2015, 97, 58-67.
[70] J.W. Lee, and T.F. Liu, Phase transformations in an Fe-8 Al-10 Ni-2 C alloy, Scr. Mater, 2001, 44, 257-262.
[71] C.N. Hwang, and T.F. Liu, Grain boundary precipitation reactions in a wrought Fe-8 Al-5 Ni-2 C alloy prepared by the conventional ingot process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, 1998, 29 A, 693-696.
[72] W.C. Cheng, Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing, 2014, JOM 66, 1809-1820.
[73] J.B. Seol, D. Raabe, P. Choi, Y.R. Lim, C.G. Park, Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels, Acta Mater, 2012, 60, 6183-6199.
[74] K.V. Chuistov, Copper-titanium solid solutions are a new generation of high-strength age-hardening alloys, Usp. Fiz. Met, 2005, 6, 55-103.
[75] H.R. Sinning, Cyclic deformation of spinodally decomposed Cu-4at.% Ti single crystals and polycrystals, Materials Science and Engineering, 1982, 55(2), 247-256.
[76] Boonyachut, N, The cellular transformation in copper-titanium age-hardening alloys, Ph. D. Thesis (2007) USA.
[77] R. A. Fournelle and J. B. Clark, The genesis of the cellular precipitation reaction, Metall, Trans, 1972, 3, 2757.
[78] Koster W, Tonn W. The iron corner of the iron-manganese-aluminum system, Arch Eisenhüttenwes 1933, 7, 365-366.
[79] Han KH, Yoon JC, Choo WK. TEM evidence of modulated structure in Fe-Mn-Al-C austenitic alloys. Scripta Metall 1986, 20, 33-36.
[80] M. Palm, G. Inden, Experimental determination of phase equilibria in the FeAlC system, Intermetallics, 1995, 3, 443-454.
[81] M.C. Li, H. Chang, P.W. Kao, Mat. Chem. Phs, 1999, 5996.
[82] Y. Kimura, K. Handa, K. Hayashi and Y. Mishima, Microstructure control and ductility improvement of the two-phase γ-Fe / κ-(Fe, Mn)3AlC alloys in the Fe–Mn–Al–C quaternary system. Intermetallics, 2004, 12(6), 607-617.
[83] W.K. Choo, and D.G. Kim, Lattice modulation and formation of lamellar duplex ferrite/cubic carbide microstructure in rapidly solidified Fe-Ni-Al-C alloys, Metall. Trans. A, 1987, 18(5), 759-766.
[84] G.Spanos and H.I. Aaronson, Morphology, crystallography and mechanism of sympathetic nucleation of proeutectoid cementite plates, Scripta Metall, 1988, 22, 1537.
[85] K.H. Kuo, C.L. Jia, Crystallography of M23C6 and M6C precipitated in a low alloy steel, Acta Metall., 1985, 33(6), 991.
[86] P.R. Howell, J.V. Bee, R.W.K. Honeycombe, The crystallography of the austenite-ferrite/carbide transformation in Fe-Cr-C alloys, Metall. Trans, 1979, 10A, 1213.
[87] M.H. Lewis, B. Hattersley, Acta Metall, Precipitation of M23C6 in austenitic steels, Acta metallurgica,1965, 13, 1159.
[88] L.K. Singhal, J.W. Martin, Acta Metall, 1968, 16, 1159.
[89] B. Weiss, R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Metall. Trans, 1972, 3, 851.
[90] J.B. Lupton, S. Murphy, J.H. Woodhead, The tempering of low carbon steels containing tungsten, Metall. Trans, 1972, 3, 2923.
[91] K. Campbell, R.W.K. Honeycombe, The isothermal decomposition of austenite in simple chromium steels, Metal Sci, 1974, 8, 197.
[92] A. Boeuf, R. Caciuffo, S. Crico, Time dependence at 550 and 700° C of M23C6 precipitate composition in AISI 304 stainless steel, Mat. Let, 1983, 2, 1, 49.
[93] W.C. Cheng and Li.Y. Cheng, The Coexistence of Two Different Pearlites, Lamellae of (Ferrite + M3C), and Lamellae of (Ferrite+ M23C6) in a Mn-Al Steel, Metallurgical and Materials Transactions A, 2012, 43(6), 1817-1825.
[94] D.S. Zhou and G.J. Shiflet, A new orientation relationship between austenite and cementite in an Fe-C-Mn steel, Scripta Metall, 1992, 27, 1215.
[95] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mat, 2004, 6(5), 299.
[96] R.C. Ecob, J.V. Bee, B. Ralph, "Some Microstructural Observations
Of Transformations In A Copper-Titanium Alloy" (1979).
[97] 胡廷菁,錳鋁鋼的層狀反應相變化研究,碩士論文,2011,國立臺灣科技大學機械工程系,台北市。
[98] W.C. Cheng, Y.S. Song, Y.S. Lin, K.F. Chen, P.C. Pistorius, On the eutectoid reaction in a quaternary Fe-C-Mn-Al alloy:austenite → ferrite + kappa-carbide + M23C6 carbide, Metallurgical and Materials Transactions A, 2014, 45A, 1199-1216.
[99] W.F. Smith, Structure and Properties of Engineering Alloys, 2/e, 1 (1993).
[100] Y. Sutou, N. Kamiya, R. Umino, I. Ohnuma and K. Ishida, High-strength Fe–20Mn–Al–C-based alloys with low density, ISIJ international, 2010, 50(6), 893-899.
[101] L.N. Bartlett, D.C. Van Aken, J. Medvedeva, D. Isheim, N. I. Medvedeva and K. Song, An atom probe study of kappa carbide precipitation and the effect of silicon addition, Metallurgical and Materials Transactions A, 2014, 45(5), 2421-2435.
[102] H. Huang, D. Gan and P.W. Kao, Effect of alloying additions on the κ phase precipitation in austenitic Fe-Mn-Al-C alloys, Scripta Metallurgica et Materialia, 1994, 30(4), 499-504.
[103] W.D. Callister, J.R. David G. Rethwisch, Materials Science and engineering an introduction, 9th edition.
[104] 宋元聖,錳鋁鋼中形成κ波來體的共析反應研究,碩士論文,2011,國立臺灣科技大學機械工程系,台北市。
[105] 黃祥銘,鐵-13錳-3鋁-0.5碳合金鋼共析反應研究,碩士論文,2010,國立臺灣科技大學機械工程系,台北市。
[106] 陳欣佑,錳鋁鋼的兩種共析反應研究,碩士論文,2011,國立臺灣科技大學機械工程系,台北市。

無法下載圖示 全文公開日期 2031/10/07 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE