簡易檢索 / 詳目顯示

研究生: 孫國展
Guo-jan Suen
論文名稱: 光纖雷射於波長轉換應用之研究
A Study on the Application of Fiber Laser to Wavelength Conversion
指導教授: 劉政光
Cheng-Kuang Liu
口試委員: 李三良
San-Liang Lee
廖顯奎
Hsien-Kuei Liao
譚昌文
Chang-wen Tan
周肇基
Chao-Chi Chou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 光纖雷射波長轉換
外文關鍵詞: fiber laser, wavelength conversion
相關次數: 點閱:326下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文除了探討利用電吸收調變器完成波長轉換外,還探討光纖雷射於波長轉換應用的相關特性。內容主要包含其物理機制、電吸收調變器特性與波長轉換特性的量測,以及光纖雷射光源穩定度的探討,並利用主動鎖模方式來探討光纖雷射光源之波長轉換。
在實驗上,先是量測改變外加偏壓與幫浦功率對元件特性的影響,再以調變訊號速率為10Gbps進行波長轉換,並探討轉換後所量測的熄滅比、眼形圖以及誤碼率特性,和波長及外加電壓改變對轉換效率及熄滅比、誤碼率、眼形圖的影響。

在使用DFB雷射進行波長轉換後,其誤碼率可達10-12,熄滅比約為4~6dB,轉換效率約為-22dB。而光纖雷射功率較不穩定,但使用光纖雷射當作探針光源或是幫浦光源遭遇困難,主要因為模態太多,且共振基頻一般為5MHz~100MHz,無法調變光源,而我們將該一光纖雷射利用主動式鎖模改善功率不穩的問題,我們發現可以大幅改善波長轉換的效果。


In this thesis, we demonstrate all-optical wavelength conversion using electro-absorption modulator at 10Gbps, and also study the use of fiber laser in wavelength conversion. The topics include its physical mechanism, and the measured characteristics of electro-absorption modulator, and wavelength conversion by EA modulator. Moreover, the effect of the optical power stability of fiber lasers on wavelength conversion is studied. An active-mode locking method is used to lock the modes of fiber laser, in order to increase stability of fiber laser.
In our experiments, measurements were carried out by varying the parameters of EA modulator such as biasing voltage and optical pumping power. Wavelength conversion is accomplished at 10Gbps and the eye diagrams and BER are studied.
The BER is up to 10-12, the ER is 4~6dB, and the efficiency of wavelength conversion is -22dB, when DFB lasers are as light source. Since optical power of fiber lasers is not stable in general, it is difficult to be used as a conversion light source. To study the laser stability, an active mode-locking method is used to lock the lasing mode. A significant improvement in the wavelength conversion is found in our study.

論文摘要 I ABSTRACT II 誌 謝 III 目錄 IV 圖索引 VII 表索引 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 波長轉換技術 3 1.3.1 光電波長轉換 3 1.3.2 同調效應之波長轉換技術 4 1.3.3 交叉調變波長轉換技術 5 1.4 一般常見半導體與光纖雷射種類 8 1.4.1 Fabry-Perot Laser 8 1.4.2分佈回饋式雷射 9 1.4.3 光纖雷射 9 1.5 章節簡介 10 第二章 基本理論 11 2.1 半導體光波導之非線性光學 11 2.1.1 波克效應 11 2.1.2克爾效應 12 2.2半導體之光吸收現象 14 2.2.1 直接變遷吸收 14 2.2.2 間接變遷吸收 16 2.2.3 激子吸收 16 2.2.4 自由载子吸收 18 2.2.5 載子填滿能帶效應 18 2.3 電吸收效應 19 2.3.1 Franz-Keldysh Effects 20 2.3.2 DC史塔克效應 22 2.3.3 The Kramer-Kronig Relations 23 2.4 電吸收調變波長轉換 25 2.4.1 電吸收調變器之吸收 25 2.4.2 交叉吸收飽和 25 2.4.3 波長轉換之結構 26 2.5 半導體雷射與光纖雷射共振腔之探討 27 2.5.1 半導體雷射共振腔之探討 27 2.5.2 光纖光柵雷射共振腔之探討 29 2.5.3 兩種雷射之比較 32 第三章 電吸收調變器元件之特性 34 3.1 元件結構及一般特性 34 3.2 外加電壓之影響 36 3.3 元件之光傳輸特性 37 3.4 溫度對元件之影響 41 3.4.1 能隙與溫度、壓力之相依性 42 3.4.2 熱效應之非線性現象 43 第四章 電吸收調變器之波長轉換 44 4.1 電吸收調變器之交叉吸收調變式波長轉換 44 4.1.1 波長轉換靜態量測 45 4.1.2 波長轉換動態量測 47 4.2 電吸收調變器之交叉相位調變式波長轉換 57 4.3主動式鎖模光纖雷射之波長轉換 61 4.3.1 光源穩定對波長轉換之影響 61 4.3.2 主動式鎖模雷射動作原理 63 4.3.3 主動式鎖模光纖雷射 66 4.3.4 鎖模光纖雷射與一般光纖雷射特性比較 71 第五章 結論 72 5-1 成果與討論 72 5.1.1 電吸收調變器之波長轉換 72 5.1.2 環型主動式鎖模光纖雷射之應用 73 5.1.3 環型主動式鎖模光纖雷射之交叉調變波長轉換 73 5-2 未來研究方向 74 參考文獻 75 作者簡介 80

[1] R. Ramaswami, K. N. Sivarajan, Optical Networks, Second edition, Morgan Kaufmann Publishers, 2002.
[2] C. J. Koester and E. A. Snitzer, “Amplification in a fiber laser”, Applied Optics, vol. 3, pp.1182-1186, Oct. 1964.
[3] J. R. Armitage, “Three-level fiber laser amplifier:A theoretical model” , Applied Optics, vol. 27, pp.4831-4836, Dec. 1988.
[4] W. L. Barnes, P. R. Morkel, L. Reekie, and D. N. Payne, “High quantum efficiency Er3+ fiber lasers pumped at 980nm”, Optics Letters, vol. 14, pp. 1002-1004, Sept. 1989.
[5] T. Pfeiffer, H. Schmuck and H. Bülow, “Output power characteristics of erbium-doped fiber ring lasers”, IEEE Photonics Technology Letters, vol. 4, pp.847-849, Aug. 1992.
[6] O. G. Okhotnikov and J. R. Salcedo, “Stable relaxation oscillation Er3+ doped fibers lasers”, IEEE Photonics Technology Letters, vol. 6, pp. 369-371, Mar. 1994.
[7] Y. T. Chieng, G. J. Cowle and R. A. Minasian, “Optimization of wavelength tuning of erbium doped fiber ring lasers”, IEEE Journal of Lightwave Technology, vol. 14, pp. 1730-1739, July 1996.
[8] M. Svalgard and S. L. Gilbert, “Stability of short single-mode erbium doped fiber lasers”, Applied Optics, vol. 36, pp. 4999-5005, July 1997.
[9] M. S. Borella, J. P. Jue, D. Banerjee, B. Ramamurthy, and B. Mukherjee, “Optical components for WDM lightwave networks”, Proceedings of the IEEE, vol.85, Issue 8, pp.1274-1307, Aug. 1997.
[10] K. Iizuka, Elements of Photonics, Volume II, For fiber and integrated optics, John Wiley & Sons, 2002.
[11] O. Aso, M. Tadakuma, and S. Namiki, Four-wave mixing in optical fibers and its applications, Furukawa Review, No.19, 2000.
[12] T. Durhuus, B. Mikkelsen, C. Joergensen, S. Lykke Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers”, IEEE Journal of Lightwave Technology, Vol.14, No. 6, pp.942-954, June 1996.
[13] D. Nesset, T. Kelly, and D. Marcenac, “All-optical wavelength conversion using SOA nonlinearities”, IEEE Communications Magazine, Vol. 36, p.56 , December 1998.
[14] P. Bhattacharya, Semiconductor Optoelectronic Devices, International editions, Prentice Hall, 1994.
[15] R. W. Munn and C. N. Ironside, Principles and Applications of Nonlinear Optical Materials, Blackie Academic & Professional, First edition, 1993.
[16] E. 0. Kane, “Band structure of indium antimonide”, J. Phys. Chem. Solids., vol. 1, pp. 249-261, 1957.
[17] N. Peyghambarian, S. W. Koch, A. Mysyrowicz, Introduction to Semiconductor Optics, International Editions, Prentice Hall, 1993.
[18] Jasprit Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, Cambridge University Press, First editon, 2003.
[19] L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, John Wiley & Sons, 1995.
[20] J. Feldmann, K.Goossen, D. A. B. Miller, A. Fox, J. Cunningham, and W. Yan, “Fast escape of photocreated carriers out of shallow quantum wells,” Appl. Phys. Lett., vol.59, no.1, pp.66-68, July 1991.
[21] N. Edagawa, M. Suzuki, and S. Yamamoto, “Novel wavelength converter using an electroabsorption modulator,” IEICE Transactions on Electronics, vol. E81.C, no.8, pp.1251-1257, Aug. 1998.
[22] Boche. H, Fischer. J, “Calculation of Kramers-Kronig relations with conjugated sampling series”, IEEE Conference Proceeding, p.78, June 1996.
[23] M. Fukuda, Optical Semiconductor Devices, John Wiley & Sons, 1999.
[24] R. E. Nahory, M. A. Pollack, W.D. Johnston, Jr., and R. L.Barns, “Band gap versus composition and demonstration of Vegard’s law for In1-xGaxAsyP1-y lattice matched to InP”, App. Phys. Lett., Vol. 33, No. 7, pp.659-661, October 1978.
[25] J. B. Restorff, Bland Houston, J. R. Burke, and R. E. Hayes, “Measurement effective mass in In0.9Ga0.1As0.22P0.78 by Shubnikov-de Haas oscillations”, App. Phys. Lett., Vol. 32, No. 3, 1 February 1978.
[26] M. Suzuki, H. Tanaka and S. Akiba, “Effect of hole pile-up at heterointerface on modulation voltage in InGaAsP electroabsorption modulator”, Electron. Lett., Vol. 2, no. 2, pp. 88-89, Jan. 1989.
[27] T. Wood, J. Pastalan, A. Burrus, B. Johnson, B. Miller, J. deMiguel, U. Koren, and M. Young, “Electric field screening by photogenerated holes in multiple quantum wells : A new mechanism for absorption saturation”, App. Phys. Lett., Vol. 57, no. 11, pp. 1081-1083, Sept. 1990.
[28] Pak S. Cho, Daniel Mahgerefteh, Member, IEEE, and Julius Goldhar, “All-optical 2R regeneration and wavelength conversion at 20 Gb/s using an electroabsorption modulator”, IEEE Photonics Technology Letters, Vol. 11, No. 12, pp.1662-1664, December 1999.
[29] G. Mak, C. Rolland, K. E. Fox, and C. Blaauw, “High-speed bulk InGaAsP-InP electroabsorption modulators with bandwidth in excess of 20GHz”, IEEE Photonics Techonology Letters. Vol. 2, No. 10, October 1990.
[30] D. Derickson, Fiber Optic Test and Measurement, Prentice Hall, 1998.
[31] Application Note 1432, “Jitter analysis techniques for high data rates”, Agilent Technologies.
[32] Application Note HFAN2.2.0, “Extinction ratio and power penalty”, Maxim Integrated Products, January 2005.
[33] Y. Liu, J.P. Turkiewicz, E.J.M.Verdurmen, H. de Waardt, G. D. Khoe and H. J. S. Dorren, “All-optical wavelength conversion by utilizing cross-polarization modulation in an electro-absorption modulator”, 29th European Conference on Optical Communication 2003, p. 21-25, September 2002.
[34] K. Nishimura, R. Inohara, M. Tsurusawa, and Masashi Usami, “Patterning effect at 40 Gb/s of wavelength converter utilizing cross-phase modulation in InGaAsP/InP electroabsorption”, IEEE Conference Proceeding, p.198, May 2003.
[35] Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal wavelength converter (DISC)”, IEEE Photonics Technology Letters, Vol. 10, No. 3, pp.346-348, March 1998.
[36] S. Højfeldt, S. Bischoff, and J. Mørk, “All-optical wavelength conversion and signal regeneration using an electroabsorption modulator”, IEEE Journal of Lightwave Technology, Vol. 18, No. 8, pp.1121-1127, August 2000.
[37] Ryan P. Scott, Corey V. Bennett, and B. H. Kolner, “AM and high-harmonic FM laser mode locking”, Applied Optics, Vol.36, No.24, August 1997.
[38] Y. J. Kim and D. Y. Kim, “Stable FM mode-locked erbium fiber laser with a dispersive medium”, ECOC 2005 Proceedings, Vol.3, p.133.
[39] O. Pottiez, O. Deparis, R. Kiyan, M. Haelterman, Philippe Emplit, IEEE, Patrice Mégret, and Michel Blondel, “Supermode noise of harmonically mode-locked erbium fiber lasers with composite cavity”, IEEE Journal of Quantum Electronics, Vol.38, No.3, pp.252-259, March 2002.
[40] B. E. Olsson, and D. J. Blumenthal, “Generation of 10 GHz pulse packets from an actively mode-locked fiber ring laser”, Technical Digest of the Optical Fiber Communication Conference, p.175, March 2000.
[41] X. Yang, E. Tangdiongga, S. Zhang, Z. Li, M. T. Hill, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, “Mode-locked ring lasers and their application in an all-optical flip-flop memory”, IEEE Conference Proceeding, Vol. 2, p.303, July 2004.
[42] A. L. Waksberg, M. H. Hubert, and W. R. L. Clements, “Laser modulation depth determination by a simple power measuring techonique”, IEEE Journal of Quantum Electronics, Vol.12, No.11, pp.734-736, November 1976.
[43] C. Peng, M. Yao, Q. Xu, H. Zhang, “Supression of supermode competitions in SOA fiber mode-locked ring laser”, LEOS 2002. The 15th Annual Meeting of the IEEE, Vol.2, pp.377-378, November 2002.

QR CODE