簡易檢索 / 詳目顯示

研究生: 林惠醇
Hui-Chun Lin
論文名稱: 提高OLED顯示器視覺解析度的子像素排列方式之研究
A Study of Sub-pixel Arrangement for Improving Apparent Resolution of OLED Displays
指導教授: 孫沛立
Pei-Li Sun
口試委員: 林宗翰
Tzung-Han Lin
陳鴻興
Hung-Shin Chen
溫照華
Chao-Hua Wen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 子像素渲染子像素排列有機發光顯示器視覺評估
外文關鍵詞: sub-pixel arrangement, sub-pixel rendering, visual resolution
相關次數: 點閱:230下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 平面顯示器已經廣泛地應用在日常生活中,例如智慧手機、平板電腦等,成為人們接收資訊不可或缺的工具。有機發光二極體(OLED)在眾多顯示技術中,被認為是色彩品質最好的技術,但受限於光罩解析度以及製作成本的限制,目前還無法取代LCD成為主流顯示技術。
    本研究的目的在於尋找適用於OLED顯示器的子像素排列方式。探討數種可行之子像素排列、開發相對應的子像素渲染和色彩對應演算法進行光學混色模擬,並進行人因實驗驗證模擬成果。研究結果顯示田字模式(RGGB Quad)的視覺解析度最高,田字鏡射(MQuad RGGB)的等效觀測距離較遠,換算與LG G2手機423 ppi在20公分觀測條件下的解析度,前者僅需357 ppi,後者則需要493 ppi,才可以和手機的影像解析度品質相同。田字鏡射應用在OLED光罩設計時,解析度要求可降低至246 ppi。相較於田字鏡射(MQuad RGGB),使用子像素大小不均等(size-varied)的田字形模式以及適度的影像銳化,可獲得更好的視覺均勻度與解析度。
    本研究開發了一個子像素排列與演算法實作的模擬平台,可以預觀不同的子畫素排列設計與子畫素渲染使用參數的視覺效果。透過本研究的視覺實驗,基本掌握了OLED子像素排列設計原則。本研究據此設計適用於低解析度OLED光罩的高解析度顯示技術。


    Flat panel displays have been widely used in smart phone, tablet PC and TV as primary tools for receiving visual information. Among all types of display technologies, OLED provides best color quality and image contrast. However, due to higher cost in mass production and resolution limitation of photomasks in its manufacturing process, OLED has still not yet replaced LCD to be the mainstream of display technology.
    The aims of this study are to investigate which subpixel arrangements (SPA) are more suitable for OLED displays, to develop the corresponding subpixel rendering (SPR) algorithm, and to estimate their visual performance by simulating the subpixel images on a low resolution simulator. The results show RGGB Quad is the best. Mirror Quad RGGB needs more distance to match the sharpness of a 423 ppi LG G2 smart phone at 20 cm viewing distance. The Mirror Quad RGGB enables to use low resolution OLED photomask with high resolution TFT. A size-varied RGGB quad subpixel arrangement is proposed to further enhance its visual image quality.
    A subpixel arrangement and subpixel rendering (SPR) simulator also has been developed to simulate the visual appearance of different SPAs with different SPR parameters. By means of the psycho-visual results of this study, guidelines of OLED SPA design can be derived to improve the image quality of OLED displays.

    中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章、緒論 1.1研究背景 1.2研究動機與目的 1.3論文架構 1.4論文發表 第二章、文獻探討 2.1有機發光顯示器 2.2子畫素排列 2.3子畫素色渲染 2.4RGB垂直條紋排列 2.5RGB田字型排列 2.6視覺解析度 2.7子畫素定址 2.8影像品質評估方法 第三章、子畫素排列模擬製作與實驗 3.1子畫素排列及演算法 3.1.1子畫素色渲染(SPR)演算法程式架構 3.1.2畫素色渲染(SPR)演算法程式流程 3.2SPR模擬螢幕之分析 3.2.1Samsung和LG 55” OLED curved TV比較 3.2.2LG 65” 4K2K LCD TV (LG65) 3.2.3EIZO CG241W LCD螢幕 (EZ24) 3.3解析度視覺實驗 3.3.1模擬之顯示解析度和資料渲染 3.3.2解析度人因評價正式實驗 3.4解析度人因評價實驗結果分析 3.4.1觀測距離與影像品質的相關分析 3.4.2觀測距離的變異數分析 3.4.3各種影響品質的變異數分析 3.4.4基準評價(benchmark)的變異數分析 3.4.5等效觀測解析度分析 第四章、SPR模式的簡化與改良 4.1簡化MQuad RGGB 4.2Size-Varied Quad RGGB 第五章、第二階段解析度人因評價實驗 5.1SPR模擬螢幕分析 5.2解析度人因評價實驗 5.3解析度人因評價實驗結果分析 5.3.1觀測距離與影像品質的相關分析 5.3.2觀測距離的變異數分析 5.3.3各種影響品質的變異數分析 5.3.4基準評價(benchmark)的變異數分析 5.3.5等效觀測解析度分析 第六章、子像素排列與演算法實作模擬平台 6.1模擬平台 6.2自適濾波演算法 第七章、結論與未來展望 7.1結論 7.1.1第一階段子畫素排列模擬實驗 7.1.2第二階段子畫素排列模擬實驗 7.2未來展望 參考文獻

    [1]C. H. Brown Elliott, “Co-optimization of color AMLCD subpixel architecture and rendering algorithms”, SID Symposium Digest 33, pp.172-175 (2002).
    [2]J. P. Spindler, T. K. Hatwar, M. E. Miller, A. D. Arnold, M. J. Murdoch, P. J. Kane, J. E. Ludwicki, P. J. Alessi and S. A. Van Slyke, “System considerations for RGBW OLED displays”, Journal of the SID, Vol. 14(1), pp. 37-48 (2006).
    [3]M. B. Chorin, “Performance evaluation of multi-primary color-matrix layouts for mobile displays”, Journal of the SID, Vol. 19(2), pp. 238- 245 (2011).
    [4]M. Teragawa, A. Yoshida, K. Yoshiyama, S. Nakagawa, K. Tomizawa and Y. Yoshida, “Multi-primary-color displays:The latest technologies and their benefits” , Journal of the SID, Vol. 20(1), pp. 1-11 (2012).’
    [5]C. Betrisey, J. F. Blinn, B. Dresevic, B. Hill, G. Hitchcock, B. Keely, D. P. Mitchell, J. C. Platt, T. Whitted, “Displaced Filtering for Patterned Displays”, Proc. Society for Information Display Symposium, Vol. 20(4), pp. 296-299 (2000).
    [6]C. H. Brown Elliott, T. L. Credelle, S. Han, M. H. Im, M. F. Higgins, P. Higgins, “Development of the PenTile MatrixTM color AMLCD subpixel architecture and rendering algorithms”, Journal of the SID, Vol. 11(1), pp.89-98 (2003).
    [7]R. M. Soneria, " Galaxy S6 OLED Display Technology Shoot-Out", DisplayMate Tech. Corp. , Available at :http://www.displaymate.com/Galaxy_S6_ShootOut_1.htm (2015).
    [8]R. M. Soneria, " iPhone 6 Display Technology Shoot-Out", DisplayMate Tech. Corp. , Available at :
    http://www.displaymate.com/iPhone6_ShootOut.htm (2014).
    [9]B. Klug, “Sony Announces Xperia P and U, joining Xperia S NXT Series”, Available at:
    http://www.anandtech.com/show/5583/sony-announces-xperia-p-and-u-joining-xperia-s (2012).
    [10]陳俊宏, “新世代顯示器OLED(有機電激發光體)”,生活科技教育月刊三十七卷第三期 (2004)。
    [11]財團法人光電科技工業協進會, “全球平面顯示器市場及產業技術發展動態” 財團法人光電科技工業協進會 (2006)。
    [12]A. Tsunoya, M. Kimura, “Visual Evaluation of New Pixel Arrangements for Matrix Displays”, Internationaal Display Workshop (2006).
    [13]M. A. Klompenhouwer, “Flat Panel Display Signal Processing: Analysis and Algorithms for Improved Static and Dynamic Resolution.”, Royal Philips N.V. (2006).
    [14]R. Manduchi, G. M. Cortelazzo, G. A. Mian, “Multi-stage sampling structure conversion for video signals”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 3, Issue. 5, pp. 325–340 (1993).
    [15]L. Wang, Y. Tu, and L. Chen, “Trade-off between Luminance and Color in RGBW Displays for Mobile-phone Usage”, Society for Information Display Symposium Digest38, pp. 1142-1145 (2007).
    [16]E. H. A. Langendijk, O. Belik, F. Budzelaar, and F. Vossen, “Dynamic Wide-Color-Gamut RGBW Display”, Proc. Society for Information Display Symposium Digest38, pp. 1458-1461 (2007).
    [17]W. Y. So, M. S. Weaver, J. J. Brown, “Power Efficient RGBW AMOLED Displays Incorporating Color-Down-Conversion Layers”, Society for Information Display Symposium Digest43, pp. 282-285 (2012).
    [18]M. A. Klompenhouwer, G. D. Haan, “Subpixel image scaling for color-matrix displays”, Journal of the SID, Vol. 11(1), pp. 99-108 (2003).
    [19]C .C. Lai, C .C. Tsai, “A Modified Stripe-RGBW TFT-LCD with Image-Processing Engine for Mobile Phone Displays”, IEEE Transactions on Consumer Electronics, Vol. 53, Issue. 4, pp.1628-1633 (2007).
    [20]K. Kaiser, "Prospective evaluation of visual acuity assessment: A comparison of Snellen versus ETDRS charts in clinical practice", Transactions of the American Ophthalmological Society, Vol. 107, pp. 311-324 (2009).
    [21]張書昀,“ 基於主客觀視覺評價優化RGBW液晶顯示器之子像素渲染技術”, 國立台灣科技大學色彩與照明科技研究所,碩士論文(2014)。
    [22]M. R. Luo, G. Cui, B. Rigg, “ The Development of the CIE 2000 Colour-Difference Formula:CIEDE2000”, Color Research and Application, Vol.26(5), pp.340-350 (2001).
    [23]X. Zhang, “Introduction to S-CIELAB”, Available at:http://white.stanford.edu/~brian/scielab/introduction.html (1998).
    [24]J. Farrell, S. Eldar, K. Larson, T. Matskewich, B. Wandell, "Optimizing subpixel rendering using a perceptual metric", Journal of the SID, Vol. 19(8), pp. 513-519 (2011).
    [25]Wikipedia, “Spearman's rank correlation coefficient”, Available at: https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
    [26]K. Y. Ho, P.C. Chen, ‘‘OLED Pixel Structure and Method for Manufacturing the Same’’, US 7883386. (2011).

    QR CODE