簡易檢索 / 詳目顯示

研究生: 陳柏松
Bo-Song Chen
論文名稱: 兼具照度與色度均勻性之直下式LED背光模組透鏡設計
Design of Color and Illuminance Uniformity for Direct Type LED Backlight Module Lens
指導教授: 李宗憲
Tsung-Xian Lee
口試委員: 陳俊傑
Chun-Chieh Chen
林宗翰
Tzung-Han Lin
謝明勳
Ming-Hsun Hsieh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 色彩與照明科技研究所
Graduate Institute of Color and Illumination Technology
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 111
中文關鍵詞: 直下式LED背光板光源光色模型照度分佈計算二次透鏡設計照度均勻度色度均勻度
外文關鍵詞: direct type LED backlight module, chromatic source model, lens design
相關次數: 點閱:282下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用拉格朗日插值法推算出LED單元於直下式背光模組所需之照度分佈,進而獲得出相對應之光強度分佈做為後續二次光學透鏡設計之目標,使LED背光模組不論於方形或三角形排列下,皆可提供相當高的照度分佈分別為94%以及99%。
    背光模組除了照度均勻度的要求外,也需考慮色度均勻度之表現,然而,在傳統LED光源的建立上,並未掌握真實光源之空間色彩特性。本論文提出以中場量測方法建立具有光強度與空間色彩特性之光色模型,其模擬與量測光源之光強度分佈與相關色溫分佈之相關係數分別為0.996與0.997之高相似程度;而光源加上雙凸透鏡於接受半角為1.523度、1.965度以及3.26度之條件下,其模擬與量測之光強度分佈之相關係數皆為0.991,相關色溫分佈之相關係數分別為0.996、0.995以及0.989。
    最後,進而依據光源光色模型之特性與背光板理想照度與色度分佈做為設計目標,進行二次透鏡設計與最佳化之改善,有助於直下式背光模組開發,同時達到均勻之照度分佈與色度分佈,其中,在LED背光模組方形排列,寬高比為4之條件下,二次透鏡設計之最佳照度均勻度可達83.7%,色度均勻度為0.0039。


    In our study, we use lagrange interpolate polynomial equation to calculate the LED unit illuminance distribution (LUID) in LED backlight module. The illuminance uniformity is 94% and 99% for square and triangle arrangement, respectively.
    In addition to illuminance uniformity, color uniformity also is important requirement for backlight module design. However, the traditional LED light source modeling methods did not consider the color spatial characteristics. According to this issue, we propose a new method by measuring mid-field measurement to establish chromatic source model (CSM) which including the properties of intensity and color distribution for LED light source. According, the normalized cross correlation (NCC) between measurement and simulation of intensity distribution and color distribution are 0.996 and 0.997, respectively. In order to obtain the more accuracy CSM, we further compare the NCC of measurement and simulation through mid-field. In the conditions of 1.523-1.965 and 3.26 degree, the NCC of Intensity distribution all higher than 0.99,as well as the NCC of CCT distribution is 0.996, 0.995 and 0.989, respectively.
    Furthermore, we design and optimize the secondary optical lens base on the property of CSM and the target including illuminance and color uniformity simultaneously. According the simulate process, the condition of square arrangement and DHR is equal to 4, the 83.7% of illuminance uniformity can be achieve, as well as the color uniformity ( ) can reduce to 0.0039 which below the requirement of 0.004.

    中文摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 XII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 4 1.3 研究動機與目的 10 1.4 論文大綱 12 第2章 基礎理論 13 2.1 光線追跡定理 13 2.1.1 折射率 (Refractive Index) 13 2.1.2 反射與折射定理 14 2.1.3 全反射定理 (Total Internal Reflection) 15 2.2 常用照明單位簡介 15 2.2.1 光通量(Luminous Flux, Φ) 15 2.2.2 照度(Illuminance, E) 16 2.2.3 發光強度(Luminous Intensity, I) 16 2.2.4 輝度(Luminance, L) 17 2.2.5 照明單位轉換 18 2.3 常用色彩單位簡介 21 2.3.1 CIE色度空間 21 2.3.2 色溫與相關色溫 23 2.4 均勻度定義 24 2.4.1 照度均勻度(Illuminance Uniformity) 24 2.4.2 色度均勻度(Color Spatial Uniformity, CSU) 27 第3章 照度均勻化分析 30 3.1 初階分析 30 3.2 LED單元之照度分佈推導 34 3.2.1 數學模型 34 3.2.2 組裝容忍度分析 38 3.2.3 LED單元之照度分佈結論 40 3.3 LED單元之照射覆蓋範圍擴大分析 40 3.3.1 組裝容忍度篩選 44 3.3.2 結合組裝容忍度之照度均勻度分析 46 3.3.3 總結 48 3.4 單一透鏡之照度與光強度轉換 49 3.5 照度計算之理論驗證 55 第4章 光源光色模型建立 57 4.1 光源量測與光色模型建立 57 4.1.1 色偏光源特性分析 58 4.1.2 光源光色模型建立 61 4.2 光源光色模型之中場量測機制 63 4.2.1 中場量測結果 64 4.2.2 中場模擬結果 67 4.3 TIR透鏡驗證 70 4.3.1 TIR量測結果 70 4.3.2 TIR透鏡模擬結果 73 第5章 背光板透鏡設計 78 5.1 單色光源之透鏡設計與模擬結果 78 5.2 光源光色模型之透鏡設計與模擬結果 80 5.2.1 單色光源模與光源光色模型之差異性 80 5.2.2 最佳化方法與修正結果 83 5.2.3 色度分析與比較 87 5.3 總結 90 第6章 結論與未來展望 91 參考文獻 93 中英文名詞對照表 96

    [1] E. F. Schubert and J. K. Kim, "Solid-state light sources getting smart," Science 308, 1274-1278(2005).
    [2] M. G. Craford, "LEDs for Solid State Lighting and other Emerging Applications: status, trends, and challenges," Proc. SPIE. 5941, 594101-1 - 594101-9(2005).
    [3] I. Moreno, M. Avendano-Alejo and R. I. Tzonchev, "Designing light-emitting diode arrays for uniform near-field irradiance," Appl. Opt. 45, 2265-2272 (2006).
    [4] Z. Qin, K. Wang, F. Chen, X. B. Luo and S. Liu "Analysis of condition for uniform lighting generated by array of light emitting diodes with large view angle," Opt. Express 18, 17460-17476 (2010).
    [5] J. Zheng and K. Qian. "Designing single LED illumination distribution for direct-type backlight," Appl. Opt. 52, 7022-7027(2013).
    [6] R. Hu, H. Zheng, C. Ji, S. Liu and X. B. Luo, "A method to design freeform lens for uniform illuminance in direct-lit LED backlight with high distance-height ratio," ICEPT-HDP, 1474-1478(2012).
    [7] Z. Liu, S. Liu, K. Wang and X. Luo, "Analysis of factors affecting color distribution of white LEDs," ICEPT-HDP, 1-8(2008).
    [8] C. C. Yang, C. L. Chang, K. C. Huang, and T. S. Liao, "The yellow ring measurement for the phosphor-converted white LED," ICOPEN 19, 182-187(2011).
    [9] C. C. Yang, H. Y. Tsai, and K. C. Huang, "Yellow-ring measurement of white LED in various environments," OSJ 20, 232-235(2013).
    [10] C. C. Yang, H. Y. Tsai, Y. J. Chen and K. C. Huang, "A study on the yellow ring distribution of MR-16 WLED triplet lens module," Proc. SPIE 8769, 876932-1-876932-7 (2013).
    [11] K. Wang, D. Wu, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, "Angular color uniformity enhancement of white light-emitting diodes integrated with freeform lenses," Opt. Lett. 35, 1860–1862(2010).
    [12] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, "Precise optical modeling for LED lighting verified by cross correlation in the midfield region," Opt. Lett. 31, 2193-2195 (2006).
    [13] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee and T. H. Yang, "Precise optical modeling for silicate-based white LEDs," Opt. Express 16, 20060–20066 (2008).
    [14] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee and S. M. Huang, "Optical modeling for LED mid-field region," Proc. SPIE 6342, 634217-1-634217-7 (2006).
    [15] C. C. Sun, W.T. Chien, I. Moreno, C. C. Hsieh and Y. C. Lo, "Analysis of the far-field region of LEDs," Opt. Express 17, 13918-13927(2009).
    [16] F. Kokubo and M. Yamaguchi, "Light Emitting Device and Lighting Device Having the Same," U.S. Patent No. 2009/0052192 (2009).
    [17] S. Ohkawa, "Light Emitting Device, Surface Light Source Device, Display and Light Flux Control Member," U.S. Patent No. 7621657(2009).
    [18] J. Schanda, Colorimetry : Understanding the CIE system, John Wiley & Sons, New York (2007).
    [19] D. L. MacAdam, "Visual sensitivities to color differences in daylight," J. Opt. Soc. Am. 32, 247–274 (1942).
    [20] N. Ohta and A. Robertson, Colorimetry : Fundamentals and Applications, John Wiley & Sons, New York (2006).
    [21] C.S McCamy, "Correlated color temperature as an explicit function of chromaticity coordinates," Color Res. Appl. 17, 142-144(1992).
    [22] I. Moreno, "Illumination uniformity assessment based on human vision," Opt. Lett. 35, 4030-4032(2010).
    [23] Z. Qin, C. Ji, K. Wang and S. Liu, "Analysis of light emitting diode array lighting system based on human vision: normal and abnormal uniformity condition, " Opt. Express 20, 23927-23943(2012).
    [24] S. Li, K. Wang, F. Chen, and S. Liu, "New freeform lenes for white LEDs with high color spatial uniformity," Opt. Express 22, 24418-24428(2012).
    [25] ENERGY STAR, Program Requirements for solid state lighting luminaires, Eligibility Criteria–Version 1 (2008).
    [26] T.W. Sederberg, Computer Aided Geometric Design, Brigham Young University, Utah(2012).
    [27] X. Wan, J. Yi, Z. Zhang, W. Xiao and L. Liu, "Lagrange interpolation reprojection-revising reconstruction with incomplete data in optical computed tomography," Opt. Eng. 49, 087001-1-087001-7 (2010).
    [28] S. B. Sadkhan and K. H. Ruma. "Evaluation of polynomial reconstruction problem using Lagrange interpolation method," ICCTA 1, 1399-1403(2006).
    [29] W. Yiding, and W. Xiaojing, "A new method of progressive images transmission based on largrange interpolation polynomials over finite fields," APCIP 2, 88-91(2009).

    QR CODE