簡易檢索 / 詳目顯示

研究生: 蘇健誠
Chien-cheng Su
論文名稱: 應用於傳光之自由曲面準直透鏡
The free-form collimating lens design for light transmission
指導教授: 黃忠偉
Allen Jong-Woei Whang
林保宏
Pao-Hung Lin
口試委員: 陳怡永
Yi- Yung Chen
趙涵捷
HanChieh Chao
陳炤彰
Chao-Chang A. Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 56
中文關鍵詞: 自然光照明系統、光學耦合傳光裝置、自由曲面、準直透鏡
外文關鍵詞: Optical Copuler
相關次數: 點閱:264下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 照明用電佔了總用電比例的1/3並快速的消耗有限且應用於發電的石化能源。日光照明系統因此在近年來成為熱門的研究議題之一。在許多的日照系統當中,有一知名的系統為向日葵日照系統,是由日本團隊所研發。此系統具有極高的效率並提供室內充沛的自然光進行照明。然而,像是這樣的系統是屬於動態式的日照系統,需要額外的電力來驅動追日馬達進行追日收集太陽光。與靜態式的日照系統相比較,靜態式日照系統則是具有高容忍角的設計而不像是向日葵日照系統般需要追日馬達來收集日光。而在眾多的靜態式日照系統當中,自然光照明系為一新穎的日照系統,利用直角稜鏡結構壓縮並傳導自然光進行室內照明。自然光照明系統具有許多的優點,例如可堆疊以及可模組化使得整個系統便於安裝以及維護。

    自然光照明系統又可細分為集光、傳光以及放光子系統。整個系統的效率為三個子系統效率的相互疊加。由於本篇論文主要是研究集光子系統以及傳光子系統之間的探討,因此我們主要探討如何增加傳光子系統的方法。而關於傳光子系統,光纖以及傳光管是兩種主要用於傳光的元件。傳光管是由管子以及透鏡所構成,經由透鏡的發散以及聚焦的能力,傳光管可長距離的進行光線的傳遞而不會有太大的損耗。由於光纖對於長距離的傳遞其成本太過高昂,因此在傳光元件的選擇上將選擇傳光管進行研究與探討。

    經過研究顯示傳光管的容忍角為±〖10〗^°並且經過集光模組後的光線角度遠大於10度,這會造成傳光管低效率且無法傳遞足夠的光進行室內照明。為了要解決此一問題,我們根據自由曲面的方法設計了一準直透鏡作為集光以及傳光子系統之間的耦合器。此透鏡的材質為BK7玻璃材質,當光經過此一透鏡時,光線會根據透鏡上的曲面而被收斂。而曲面的建立方式則是藉由建立並切割虛擬網格並藉由每一網格上的光源分布找出切平面向量以建立自由曲面離散面。最後將每一自由曲面離散面連結便可得到完整的自由曲面透鏡且可將光線收斂為近平行光最終使得傳光子系統的效率大幅度的上升。


    Electrical lighting consumes around 1/3 of the total electricity, it depletes rapidly the limited fosil energy sources used to generate electricity. Daylighting systems therefore become one of the most popular research issues recently. Among various daylighting systems, one is the well-known HIMAWARI, designed by a team from Japan. The system is highly efficient and provides sufficient light for indoor illumination. However, such systems are dynamic systems, which need additional electricity to drive the suntracker for gathering sunlight. Comparing with the static systems, in which the tolerance angle of the light collectors are usually designed larger rather than with the suntrackor of the HIMAWALI. Among on these static systems, the Natural Light Illumination System (NLIS) is an innovative static system, using rectangular prisms structure to compress and transmit the sunlight indoor for illumination . There are many advantages of NLIS like cascadable and modulized that is easier for installation and maintenance the system.
    The NLIS system is composed of three sub-systems, light collection, light transmission, and light emission. The overall efficiency of the NLIS is the sum of the three subsystems. Since this paper is mainly focus on the reaearch between the light collection subsystem and the transmission subsystem. We mainly explore the way to enhance the efficiency of the light transmission subsystem. Regarding to the transmission subsystem, there are two often-used component, the light pipe and the optical fiber. The light pipe is composed of tubes and lenses. With the properties of focusing and divergence, the lenses in the light pipe allow the light be transmitted to a large distance without substantial loss. Due to the cost of the fiber is too high for long distance to transmit, the light transmission component we choose to study is the light pipe.
    The research shows that the numerical aperture of the lightpipe is ±〖10〗^° and the angles behind the collection module are larger than〖 10〗^°. It would cause low efficiency and lead to insufficient light for indoor illumination. To solve this problem, we design a collimating lens based on free-form method to be a light coupler between the collection subsystem and the light transmission subsystem. The free-form lens is made of BK7 glass. When the light passing through the lens, the light will be converged according to the shape of the lens. The surface is constructed based on parting the light source into cells and calculateing the tangent vector of the refractive surface on the basis of the light distribution on each cells. Finally, we connect each free-form lens together to form the complete free-form lens and the light passing through the lens are converged as nearly parallel light. With the nearly parallel light, the efficiency of transmission part can be greatly enhanced.

    中文摘要 i 英文摘要 iii 誌謝 v 目次 vi 圖次 viii 表次 x 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 1 1.3 內容概述 3 第二章 光學基礎理論與基本照明單位量 5 2.1光學理論與光學元件 5 2.1.1光線的反射定律 5 2.1.2光線的折射定律 6 2.1.3透鏡(Lens) 7 2.1.4菲涅爾透鏡(Fresnel lens) 7 2.1.5光展量定理(etendue) 8 2.2 基本照明單位量 10 2.2.1輻射度學與光度學 10 2.2.2光通量(Luminous Flux, Φ) 12 2.2.3光強度(Luminous Intensity, I) 12 2.2.4照度(Illuminance, E) 13 2.2.5輝度(Luminance, L) 13 第三章 自由曲面(Freeform) 15 3.1幾何光學分析 15 3.1.1折射面分析 15 3.1.2反射面分析 16 3.2 3.2自由曲面建模 18 第四章 設計概念及流程 19 4.1傳統與新式集光模組 19 4.1.1新式集光模組特性 21 4.1.2導光系統特性 24 4.1.3新式集光模組與導光系統耦合問題及解決方法 26 4.2設計概念 27 4.2.1建立虛擬分析面 27 4.2.2網格切割 28 4.2.3建構自由曲面離散面 29 4.3光線追跡 30 4.4設計流程 31 第五章 模擬結果分析與討論 33 5.1模擬參數以及初始條件設定 33 5.2完整自由曲面透鏡建構 35 5.3傳遞能量以及流明數比較 37 5.4耦合效率 41 第六章 結論與未來展望 43 6.1結論 43 6.2未來展望 43 參考文獻 44

    [1] 綠色能源發展趨勢
    [2] http://www.yfes.tn.edu.tw/environment/main4.files/4-1.htm
    [3] 黃瑋,應用於室內照明之自然導光拋物體集光器設計,碩士論文,國立台灣科技大學電子工程系碩士論文,台北(2008)
    [4] W. A., S. P., L. H., M. E., P. L., and K. Z. "Analysis of laser scribes at CIGS thin-film solar cells by localized electrical and optical measurements." Optics & Laser Technology 44, no. 6 (2012): 1753-1757.
    [5] A. M. F., K. M. E, M. R. A., and A. K. A. "Optimal extraction of solar cell parameters using pattern search." Renewable Energy 44 (2012): 238-245.
    [6] W. A. J. W., K. Y. C, K. H. C, and Y. Y. C. "Refining an optical switch for the Natural Light Guiding System." Lighting Research and Technology (2010): 1477153510386668.
    [7] L. M, L. D., New York: Marcel Dekker, 1991
    [8] C. K, C. Y.Y., W. A.J.W., An optical switch of natural light guiding system based on cubic structure with Fresnel surface, Proceedings of SPIE 7428, 74280O (2009)
    [9] W. A. J. W., Y. Y. C., S. H. Y., P. H. P., K. H. C., Y. C. L., Z. Y. L., C. A. C., and C. N. C. "Natural light illumination system." Applied optics 49.35 (2010): 6789-6801.
    [10] 陳偉安,「具光學結構設計之高效率傳光管」,國立台灣科技大學,碩士論文,台北 (2012)
    [11] Y. K. C. and J. L. C. Irradiance formations in hollow straight light pipes with square and circular shapes. J. Opt. Soc. Am. A 2006;23: 427-34.
    [12] G. A. S., An Introduction to Ray Tracing, Academic Press (1989)
    [13] 馬啟唐,交錯式雙層透鏡陣列應用於自然光照明系統之靜態式集光器,國立台灣科技大學,碩士論文,台北(2011)。
    [14] 謝瑋哲,非聚焦式自由曲面透鏡圓盤集光器,國立台灣科技大學,碩士論文,台北(2011)。
    [15] 百度百科http://baike.baidu.com/view/229022.htm
    [16] W. R., M. J. C., & B. P.,(2005). Nonimaging optics. Academic Press.
    [17] 光度學名詞定義 http://www.docin.com/p-8755529.html
    [18] L. W, K.Q., and Y. L. (2007). Discontinuous free-form lens design for prescribed irradiance. 2007 Optical Society of America, Applied Optics, Vol. 46, Issue 18, pp. 3716-3723 (2007), 15 February 2007.
    [19] M. A. M., L. L. D., and N. L. K. (2011). Design of high-efficient freeform LED lens for illumination of elongated rectangular regions, 2011 Optical Society of America, Optics Express, Vol. 19, Issue S3, pp. A225-A233 (2011), 10 Mar 2011.
    [20] Y. D., X. L., Z. R. Z., and P. F. G. (2008). Freeform LED lens for uniform illumination. 2007 Optical Society of America, Optics Express, Vol. 16 Issue 17, pp.12958-12966 (2008), 18 August 2008 / Vol. 16, No. 17.
    [21] Y. L., Z. F., Y. H., H. L. (2010). Design of compact and smooth free-form optical system with uniform illuminance for LED source. 2010 Optical Society of America, Optics Express, Vol. 18 Issue 9, pp.9055-9063 (2010), 6 Apr 2010.
    [22] J. J. C, T. Y. W., K. L. H., T. S. L., M. D. T., and C. T. L. (2012). Freeform lens design for LED collimating illumination, 2012 Optical Society of America, Optics Express, Vol. 20, Issue 10, pp. 10984-10995 (2012), 7 May 2012.

    無法下載圖示 全文公開日期 2019/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE