簡易檢索 / 詳目顯示

研究生: 黃漢文
Han-Wen Huang
論文名稱: 硫摻雜對Li1.2Ni0.2Mn0.6O2層狀陰極氧析出的影響-理論研究
Effects of Sulfur doping into Li1.2Ni0.2Mn0.6O2 Layered Oxide Cathodes on Oxygen Evolution-A Theoretical study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 郭哲來
Jer-Lai Kuo
蔡大翔
Dah-Shyang Tsai
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 94
中文關鍵詞: 密度泛涵理論過量鋰陰極
外文關鍵詞: Density functional theory, Lithium ion battery, Li1.2Ni0.2Mn0.6O2, O2 evolution, Sulfur Doping
相關次數: 點閱:262下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

可充電鋰離子電池由於其低成本和高電容量,已被廣泛應用於從手機到電動汽車的各種應用中。近來,在鋰離子電池中,富鋰的層狀錳氧化物(Li1.2Ni0.2Mn0.6O2)作為正極材料的潛在應用,引起了人們的廣泛關注,因為這些富鋰的氧化物比市售的LiCoO2便宜且對環境更友好。但是,這些材料仍然導致不可逆的電容量損失,促使電壓衰減和速率能力差的問題。另外,高度的脫鋰導致結構轉變和氧氣被釋放,這些現象會導致較差的結構穩定性。在這項研究中,我們使用密度泛函理論計算,系統地研究了原始Li1.2Ni0.2Mn0.6O2(003)表面上可能發生的氧氣逸出反應。我們發現與Li原子線性鍵合的氧原子(Li-O-Li構型)變得不穩定,並在脫鋰過程中開始氧化。我們的理論計算結果顯示這種構型中的氧原子會被氧化,並在高度脫鋰的Li1.2Ni0.2Mn0.6O2(003)表面上形成氧氣分子。我們進一步研究,摻雜S原子可以抑制Li1.2Ni0.2Mn0.6O2表面上的氧逸出。根據理論計算的結果,發現在表面上摻雜S原子可以與O原子在表面上形成SO3物種來防止氧氣分子的形成,對於下一世代的鋰電池而言,摻雜S原子在Li1.2Ni0.2Mn0.6O2表面上可以有效抑制氧氣釋放和改善Li的層狀富鋰錳基正極材料的結構穩定性,提供了重要的指標。


Rechargeable Lithium-ion batteries have been used in a wide range of applications, from cell phones to electric cars, because of its low cost and high specific capacity. Recently, Li-rich layered manganese oxides (Li1.2Ni0.2Mn0.6O2) have attracted much attention for their potential application as cathode materials in lithium-ion batteries since these Li-rich oxides are inexpensive and more environmentally friendly than the commercial LiCoO2. However, these materials still suffer from irreversible capacity loss, poor capacity retention, voltage decay, and poor rate capability. In addition, a high degree of delithiation causes structure transformation, oxygen evolution, which leads to poor stability. In this study, we have used density functional theory calculations to systematically study the possible oxygen evolution reactions on the pristine Li1.2Ni0.2Mn0.6O2 (003) surface. We identify that the oxygen atoms which are linearly bonded with Li atoms (Li-O-Li configuration) become unstable and begin to oxidize during delithiation. Our results indicate that the oxygen atoms in this configuration are continuously oxidized and formed oxygen molecules on the Li1.2Ni0.2Mn0.6O2 (003) surface at a high degree of delithiation. We further demonstrate that the doping of S atomto suppress the oxygen evolution on the Li1.2Ni0.2Mn0.6O2 surface. Our results indicate that doping of S atom on the surface can prevent oxygen formation via the formation of SO3 species on the surface. We have also investigated the formation of different oxygen species such as O-, and O2- after sulfur doping during delithiation. Our theoretical study on doping of S atom in Li1.2Ni0.2Mn0.6O2 surface may provide a vital hint for inhibiting the oxygen evolution and improving the structural stability of the layered lithium-rich manganese-based cathode materials for next-generation Li-ion batteries.

Contents List of Figures 7 Chapter 1 Introduction 11 1.1 Basic working principle of lithium-ion battery 14 1.2 The main components of lithium-ion batteries 15 1.2.1 Cathode material 16 1.2.2 Anode material 16 1.2.3 Electrolytes 17 1.3 Layered Mn-based oxides 18 1.3.1 LiMnO2 18 1.3.2 Li2MnO3 20 1.3.3 Li-rich Layered Oxides 21 1.3.4 Jahn-teller effect 22 1.3.5 Oxygen evolution 23 1.3.6 Li1.2Ni0.2Mn0.6O2 25 1.3.7 Surface coating 26 1.3.8 Cation doping 27 1.3.9 Anion doping 28 1.4 Present Study 29 Chapter 2 Theoretical methodology 31 Chapter 3 Results and Discussion 32 3.1 Modeling of surface Li1.2Ni0.2Mn0.6O2 32 3.1.1 Li1.2Ni0.2Mn0.6O2 Surface modeling 32 3.1.2 The density of states for Li1.2Ni0.2Mn0.6O2 surface 37 3.1.3 Oxygen evolution for Li1.2Ni0.2Mn0.6O2 surface structure 53 3.2 Electronic proprieties of Li1.2Ni0.2Mn0.6O2 55 3.3 Doping of Sulphur on Li1.2Ni0.2Mn0.6O2 surface 63 3.3.1 Li1.2Ni0.2Mn0.6O1.97S0.03 Surface modeling 63 3.3.2 Sulfur-doped Li1.2Ni0.2Mn0.6O2 surface structure inhibits oxygen evolution. 67 3.3.3 Electronic proprieties of Li1.2Ni0.2Mn0.6O1.97S0.03 69 3.4 Doping of phosphorus on Li1.2Ni0.2Mn0.6O2 surface 75 3.4.1 Li1.2Ni0.2Mn0.6O1.97P0.03 Surface modeling 75 3.4.2 Oxygen evolution for Li1.2Ni0.2Mn0.6O0.03P0.03 surface structure 77 3.4.3 Electronic proprieties of Li1.2Ni0.2Mn0.6O1.97P0.03 79 Chapter 4 Conclusion 84

1. Li, B.; Xia, D., Anionic Redox in Rechargeable Lithium Batteries. Advanced Materials 2017, 29, 1701054.
2. Yin, S.-C.; Rho, Y.-H.; Swainson, I.; Nazar, L., X-Ray/Neutron Diffraction and Electrochemical Studies of Lithium De/Re-Intercalation in Li1-X Co1/3ni1/3mn1/3o2 (X= 0→ 1). Chemistry of materials 2006, 18, 1901-1910.
3. Strobel, P.; Lambert-Andron, B., Crystallographic and Magnetic Structure of Li2mno3. Journal of Solid State Chemistry 1988, 75, 90-98.
4. Manthiram, A.; Knight, J. C.; Myung, S. T.; Oh, S. M.; Sun, Y. K., Nickel‐Rich and Lithium‐Rich Layered Oxide Cathodes: Progress and Perspectives. Advanced Energy Materials 2016, 6, 1501010.
5. Shi-xi, Z.; Han-xing, L.; Shi-xi, O.; Qiang, L., Synthesis and Performance of Limno 2 as Cathodes for Li-Ion Batteries. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2003, 18, 5-8.
6. Liu, W.; Farrington, G.; Chaput, F.; Dunn, B., Synthesis and Electrochemical Studies of Spinel Phase Limn2 O 4 Cathode Materials Prepared by the Pechini Process. Journal of The Electrochemical Society 1996, 143, 879-884.
7. Liu, G.; Wen, L.; Liu, Y., Spinel Lini 0.5 Mn 1.5 O 4 and Its Derivatives as Cathodes for High-Voltage Li-Ion Batteries. Journal of Solid State Electrochemistry 2010, 14, 2191-2202.
8. Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
9. Ohzuku, T.; Ueda, A.; Nagayama, M., Electrochemistry and Structural Chemistry of Linio2 (R3m) for 4 Volt Secondary Lithium Cells. Journal of the Electrochemical Society 1993, 140, 1862-1870.
10. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 1980, 15, 783-789.
11. Xia, H.; Meng, S. Y.; Lu, L.; Ceder, G., Electrochemical Behavior and Li Diffusion Study of Licoo₂ Thin Film Electrodes Prepared by Pld. 2007.
12. Kiehne, H. A., Battery Technology Handbook; CRC Press, 2003; Vol. 118.
13. Brissot, C.; Rosso, M.; Chazalviel, J.-N.; Lascaud, S., Dendritic Growth Mechanisms in Lithium/Polymer Cells. Journal of power sources 1999, 81, 925-929.
14. Fukuda, K.; Kikuya, K.; Isono, K.; Yoshio, M., Foliated Natural Graphite as the Anode Material for Rechargeable Lithium-Ion Cells. Journal of power sources 1997, 69, 165-168.
15. Fujimoto, M.; Shoji, Y.; Kida, Y.; Ohshita, R.; Nohma, T.; Nishio, K., Influence of Solvent Species on the Charge–Discharge Characteristics of a Natural Graphite Electrode. Journal of power sources 1998, 72, 226-230.
16. Arakawa, M.; Yamaki, J.-I., The Cathodic Decomposition of Propylene Carbonate in Lithium Batteries. Journal of electroanalytical chemistry and interfacial electrochemistry 1987, 219, 273-280.
17. Aurbach, D.; Ein‐Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin, H., The Correlation between the Surface Chemistry and the Performance of Li‐Carbon Intercalation Anodes for Rechargeable ‘Rocking‐Chair’type Batteries. Journal of The Electrochemical Society 1994, 141, 603-611.
18. Nakamura, H.; Komatsu, H.; Yoshio, M., Suppression of Electrochemical Decomposition of Propylene Carbonate at a Graphite Anode in Lithium-Ion Cells. Journal of power sources 1996, 62, 219-222.
19. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in Electrolytes for Rechargeable Li-Based Batteries and Beyond. Green Energy & Environment 2016, 1, 18-42.
20. Croy, J. R.; Abouimrane, A.; Zhang, Z., Next-Generation Lithium-Ion Batteries: The Promise of near-Term Advancements. MRS bulletin 2014, 39, 407-415.
21. Armstrong, A. R.; Dupre, N.; Paterson, A. J.; Grey, C. P.; Bruce, P. G., Combined Neutron Diffraction, Nmr, and Electrochemical Investigation of the Layered-to-Spinel Transformation in Limno2. Chemistry of materials 2004, 16, 3106-3118.
22. Jansen, M.; Hoppe, R., Zur Kenntnis Der Nacl‐Strukturfamilie: Neue Untersuchungen an Li2mno3. Zeitschrift für anorganische und allgemeine Chemie 1973, 397, 279-289.
23. Thackeray, M. M., Manganese Oxides for Lithium Batteries. Progress in Solid State Chemistry 1997, 25, 1-71.
24. Song, Y.; Zhao, X.; Wang, C.; Bi, H.; Zhang, J.; Li, S.; Wang, M.; Che, R., Insight into the Atomic Structure of Li 2 Mno 3 in Li-Rich Mn-Based Cathode Materials and the Impact of Its Atomic Arrangement on Electrochemical Performance. Journal of Materials Chemistry A 2017, 5, 11214-11223.
25. Rana, J.; Stan, M.; Kloepsch, R.; Li, J.; Schumacher, G.; Welter, E.; Zizak, I.; Banhart, J.; Winter, M., Structural Changes in Li2mno3 Cathode Material for Li‐Ion Batteries. Advanced Energy Materials 2014, 4, 1300998.
26. Jahn, H. A.; Teller, E., Stability of Polyatomic Molecules in Degenerate Electronic States-I—Orbital Degeneracy. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 1937, 161, 220-235.
27. Yang, L.; Takahashi, M.; Wang, B., A Study on Capacity Fading of Lithium-Ion Battery with Manganese Spinel Positive Electrode During Cycling. Electrochimica Acta 2006, 51, 3228-3234.
28. Xia, Y.; Sakai, T.; Fujieda, T.; Yang, X.; Sun, X.; Ma, Z.; McBreen, J.; Yoshio, M., Correlating Capacity Fading and Structural Changes in Li1+ Y Mn2− Y O 4− Δ Spinel Cathode Materials: A Systematic Study on the Effects of Li/Mn Ratio and Oxygen Deficiency. Journal of The Electrochemical Society 2001, 148, A723-A729.
29. Wohlfahrt-Mehrens, M.; Vogler, C.; Garche, J., Aging Mechanisms of Lithium Cathode Materials. Journal of power sources 2004, 127, 58-64.
30. Ma, Z.; Yang, X.; Sun, X.; McBreen, J., Charge-Discharge Characteristics and Phase Transitions of Mixed Lini~ 0~.~ 8co~ 0~.~ 2o~ 2 and Limn~ 2o~ 4 Cathode Materials for Lithium-Ion Batteries. Journal of New Materials for Electrochemical Systems 2001, 4, 121-125.
31. Lu, Z.; Dahn, J. R., Understanding the Anomalous Capacity of Li/Li [Ni X Li (1/3− 2x/3) Mn (2/3− X/3)] O 2 Cells Using in Situ X-Ray Diffraction and Electrochemical Studies. Journal of The Electrochemical Society 2002, 149, A815-A822.
32. Xiao, R.; Li, H.; Chen, L., Density Functional Investigation on Li2mno3. Chemistry of Materials 2012, 24, 4242-4251.
33. Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S.-H.; Thackeray, M. M.; Bruce, P. G., Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li [Ni0. 2li0. 2mn0. 6] O2. Journal of the American Chemical Society 2006, 128, 8694-8698.
34. Castel, E.; Berg, E. J.; El Kazzi, M.; Novák, P.; Villevieille, C., Differential Electrochemical Mass Spectrometry Study of the Interface of X Li2mno3·(1–X) Limo2 (M= Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries. Chemistry of Materials 2014, 26, 5051-5057.
35. Chen, H.; Islam, M. S., Lithium Extraction Mechanism in Li-Rich Li2mno3 Involving Oxygen Hole Formation and Dimerization. Chemistry of Materials 2016, 28, 6656-6663.
36. Thackeray, M. M.; Kang, S.-H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S., Li 2 Mno 3-Stabilized Limo 2 (M= Mn, Ni, Co) Electrodes for Lithium-Ion Batteries. Journal of Materials chemistry 2007, 17, 3112-3125.
37. Kim, J.-S.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M.; Hackney, S. A.; Yoon, W.; Grey, C. P., Electrochemical and Structural Properties of X Li2m ‘O3⊙(1− X) Limn0. 5ni0. 5o2 Electrodes for Lithium Batteries (M ‘= Ti, Mn, Zr; 0≤ X⊠ 0.3). Chemistry of Materials 2004, 16, 1996-2006.
38. Shunmugasundaram, R.; Senthil Arumugam, R.; Dahn, J., High Capacity Li-Rich Positive Electrode Materials with Reduced First-Cycle Irreversible Capacity Loss. Chemistry of Materials 2015, 27, 757-767.
39. Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y.-S.; Edström, K.; Guo, J.; Chadwick, A. V.; Duda, L. C., Charge-Compensation in 3d-Transition-Metal-Oxide Intercalation Cathodes through the Generation of Localized Electron Holes on Oxygen. Nature chemistry 2016, 8, 684.
40. Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A., Advances in Manganese-Oxide ‘Composite’electrodes for Lithium-Ion Batteries. Journal of Materials Chemistry 2005, 15, 2257-2267.
41. Yu, H.; Kim, H.; Wang, Y.; He, P.; Asakura, D.; Nakamura, Y.; Zhou, H., High-Energy ‘Composite’layered Manganese-Rich Cathode Materials Via Controlling Li 2 Mno 3 Phase Activation for Lithium-Ion Batteries. Physical Chemistry Chemical Physics 2012, 14, 6584-6595.
42. Goodenough, J. B.; Park, K.-S., The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135, 1167-1176.
43. Xu, B.; Fell, C. R.; Chi, M.; Meng, Y. S., Identifying Surface Structural Changes in Layered Li-Excess Nickel Manganese Oxides in High Voltage Lithium Ion Batteries: A Joint Experimental and Theoretical Study. Energy & Environmental Science 2011, 4, 2223-2233.
44. Mohanty, D.; Sefat, A. S.; Kalnaus, S.; Li, J.; Meisner, R. A.; Payzant, E. A.; Abraham, D. P.; Wood, D. L.; Daniel, C., Investigating Phase Transformation in the Li 1.2 Co 0.1 Mn 0.55 Ni 0.15 O 2 Lithium-Ion Battery Cathode During High-Voltage Hold (4.5 V) Via Magnetic, X-Ray Diffraction and Electron Microscopy Studies. Journal of Materials Chemistry A 2013, 1, 6249-6261.
45. Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M.; Vezin, H.; Laisa, C.; Prakash, A., Origin of Voltage Decay in High-Capacity Layered Oxide Electrodes. Nature materials 2015, 14, 230.
46. Zheng, J.; Gu, M.; Genc, A.; Xiao, J.; Xu, P.; Chen, X.; Zhu, Z.; Zhao, W.; Pullan, L.; Wang, C., Mitigating Voltage Fade in Cathode Materials by Improving the Atomic Level Uniformity of Elemental Distribution. Nano letters 2014, 14, 2628-2635.
47. Zheng, J.; Gu, M.; Xiao, J.; Zuo, P.; Wang, C.; Zhang, J.-G., Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading During Cycling Process. Nano letters 2013, 13, 3824-3830.
48. Ma, D.; Zhang, P.; Li, Y.; Ren, X., Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2-Encapsulated Carbon Nanofiber Network Cathodes with Improved Stability and Rate Capability for Li-Ion Batteries. Scientific reports 2015, 5, 11257.
49. Zhang, J.; Lu, Q.; Fang, J.; Wang, J.; Yang, J.; NuLi, Y., Polyimide Encapsulated Lithium-Rich Cathode Material for High Voltage Lithium-Ion Battery. ACS applied materials & interfaces 2014, 6, 17965-17973.
50. Wu, F.; Liu, J.; Li, L.; Zhang, X.; Luo, R.; Ye, Y.; Chen, R., Surface Modification of Li-Rich Cathode Materials for Lithium-Ion Batteries with a Pedot: Pss Conducting Polymer. ACS applied materials & interfaces 2016, 8, 23095-23104.
51. Zou, G.; Yang, X.; Wang, X.; Ge, L.; Shu, H.; Bai, Y.; Wu, C.; Guo, H.; Hu, L.; Yi, X., Improvement of Electrochemical Performance for Li-Rich Spherical Li 1.3 [Ni 0.35 Mn 0.65] O 2+ X Modified by Al 2 O 3. Journal of Solid State Electrochemistry 2014, 18, 1789-1797.
52. Wang, Z.; Liu, E.; Guo, L.; Shi, C.; He, C.; Li, J.; Zhao, N., Cycle Performance Improvement of Li-Rich Layered Cathode Material Li [Li0. 2mn0. 54ni0. 13co0. 13] O2 by Zro2 Coating. Surface and Coatings Technology 2013, 235, 570-576.
53. Zheng, J.; Li, J.; Zhang, Z.; Guo, X.; Yang, Y., The Effects of Tio2 Coating on the Electrochemical Performance of Li [Li0. 2mn0. 54ni0. 13co0. 13] O2 Cathode Material for Lithium-Ion Battery. Solid State Ionics 2008, 179, 1794-1799.
54. Wu, Y.; Manthiram, A., Effect of Surface Modifications on the Layered Solid Solution Cathodes (1− Z) Li [Li1/3mn2/3] O2−(Z) Li [Mn0. 5− Yni0. 5− Yco2y] O2. Solid State Ionics 2009, 180, 50-56.
55. Wu, F.; Li, N.; Su, Y.; Lu, H.; Zhang, L.; An, R.; Wang, Z.; Bao, L.; Chen, S., Can Surface Modification Be More Effective to Enhance the Electrochemical Performance of Lithium Rich Materials? Journal of Materials Chemistry 2012, 22, 1489-1497.
56. Shi, S.; Tu, J.; Tang, Y.; Liu, X.; Zhang, Y.; Wang, X.; Gu, C., Enhanced Cycling Stability of Li [Li0. 2mn0. 54ni0. 13co0. 13] O2 by Surface Modification of Mgo with Melting Impregnation Method. Electrochimica Acta 2013, 88, 671-679.
57. Liu, J.; Manthiram, A., Functional Surface Modifications of a High Capacity Layered Li [Li 0.2 Mn 0.54 Ni 0.13 Co 0.13] O 2 Cathode. Journal of Materials Chemistry 2010, 20, 3961-3967.
58. Shi, S.; Tu, J.; Zhang, Y.; Zhang, Y.; Zhao, X.; Wang, X.; Gu, C., Effect of Sm2o3 Modification on Li [Li0. 2mn0. 56ni0. 16co0. 08] O2 Cathode Material for Lithium Ion Batteries. Electrochimica Acta 2013, 108, 441-448.
59. He, H.; Zan, L.; Zhang, Y., Effects of Amorphous V2o5 Coating on the Electrochemical Properties of Li [Li0. 2mn0. 54ni0. 13co0. 13] O2 as Cathode Material for Li-Ion Batteries. Journal of Alloys and Compounds 2016, 680, 95-104.
60. Hou, M.; Liu, J.; Guo, S.; Yang, J.; Wang, C.; Xia, Y., Enhanced Electrochemical Performance of Li-Rich Layered Cathode Materials by Surface Modification with P2o5. Electrochemistry communications 2014, 49, 83-87.
61. Pang, S.; Wang, Y.; Chen, T.; Shen, X.; Xi, X.; Liao, D., The Effect of Alf3 Modification on the Physicochemical and Electrochemical Properties of Li-Rich Layered Oxide. Ceramics International 2016, 42, 5397-5402.
62. Liu, X.; Huang, T.; Yu, A., Surface Phase Transformation and Caf2 Coating for Enhanced Electrochemical Performance of Li-Rich Mn-Based Cathodes. Electrochimica Acta 2015, 163, 82-92.
63. Li, L.; Chang, Y.; Xia, H.; Song, B.; Yang, J.; Lee, K.; Lu, L., Nh4f Surface Modification of Li-Rich Layered Cathode Materials. Solid State Ionics 2014, 264, 36-44.
64. Zhao, T.; Li, L.; Chen, R.; Wu, H.; Zhang, X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K., Design of Surface Protective Layer of Lif/Fef3 Nanoparticles in Li-Rich Cathode for High-Capacity Li-Ion Batteries. Nano Energy 2015, 15, 164-176.
65. Chong, S.; Chen, Y.; Yan, W.; Guo, S.; Tan, Q.; Wu, Y.; Jiang, T.; Liu, Y., Suppressing Capacity Fading and Voltage Decay of Li-Rich Layered Cathode Material by a Surface Nano-Protective Layer of Cof2 for Lithium-Ion Batteries. Journal of Power Sources 2016, 332, 230-239.
66. Guo, H.; Xia, Y.; Zhao, H.; Yin, C.; Jia, K.; Zhao, F.; Liu, Z., Stabilization Effects of Al Doping for Enhanced Cycling Performances of Li-Rich Layered Oxides. Ceramics International 2017, 43, 13845-13852.
67. Feng, X.; Gao, Y.; Ben, L.; Yang, Z.; Wang, Z.; Chen, L., Enhanced Electrochemical Performance of Ti-Doped Li1. 2mn0. 54co0. 13ni0. 13o2 for Lithium-Ion Batteries. Journal of Power Sources 2016, 317, 74-80.
68. Song, B.; Zhou, C.; Wang, H.; Liu, H.; Liu, Z.; Lai, M. O.; Lu, L., Advances in Sustain Stable Voltage of Cr-Doped Li-Rich Layered Cathodes for Lithium Ion Batteries. Journal of The Electrochemical Society 2014, 161, A1723-A1730.
69. Chen, H.; Hu, Q.; Huang, Z.; He, Z.; Wang, Z.; Guo, H.; Li, X., Synthesis and Electrochemical Study of Zr-Doped Li [Li0. 2mn0. 54ni0. 13co0. 13] O2 as Cathode Material for Li-Ion Battery. Ceramics International 2016, 42, 263-269.
70. Liu, X.; Huang, T.; Yu, A., Fe Doped Li1. 2mn0. 6-X/2ni0. 2-X/2fexo2 (X≤ 0.1) as Cathode Materials for Lithium-Ion Batteries. Electrochimica Acta 2014, 133, 555-563.
71. Knight, J. C.; Nandakumar, P.; Kan, W. H.; Manthiram, A., Effect of Ru Substitution on the First Charge–Discharge Cycle of Lithium-Rich Layered Oxides. Journal of Materials Chemistry A 2015, 3, 2006-2011.
72. He, W.; Yuan, D.; Qian, J.; Ai, X.; Yang, H.; Cao, Y., Enhanced High-Rate Capability and Cycling Stability of Na-Stabilized Layered Li 1.2 [Co 0.13 Ni 0.13 Mn 0.54] O 2 Cathode Material. Journal of Materials Chemistry A 2013, 1, 11397-11403.
73. An, J.; Shi, L.; Chen, G.; Li, M.; Liu, H.; Yuan, S.; Chen, S.; Zhang, D., Insights into the Stable Layered Structure of a Li-Rich Cathode Material for Lithium-Ion Batteries. Journal of Materials Chemistry A 2017, 5, 19738-19744.
74. Li, L.; Song, B.; Chang, Y.; Xia, H.; Yang, J.; Lee, K.; Lu, L., Retarded Phase Transition by Fluorine Doping in Li-Rich Layered Li1. 2mn0. 54ni0. 13co0. 13o2 Cathode Material. Journal of Power Sources 2015, 283, 162-170.
75. Kang, B.; Ceder, G., Battery Materials for Ultrafast Charging and Discharging. Nature 2009, 458, 190.
76. Kang, K.; Meng, Y. S.; Bréger, J.; Grey, C. P.; Ceder, G., Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science 2006, 311, 977-980.
77. Ohzuku, T.; Ueda, A.; Nagayama, M.; Iwakoshi, Y.; Komori, H., Comparative Study of Licoo2, Lini12co12o2 and Linio2 for 4 Volt Secondary Lithium Cells. Electrochimica Acta 1993, 38, 1159-1167.
78. Aydinol, M.; Kohan, A.; Ceder, G.; Cho, K.; Joannopoulos, J., Ab Initio Study of Lithium Intercalation in Metal Oxides and Metal Dichalcogenides. Physical Review B 1997, 56, 1354.
79. Ceder, G.; Chiang, Y.-M.; Sadoway, D.; Aydinol, M.; Jang, Y.-I.; Huang, B., Identification of Cathode Materials for Lithium Batteries Guided by First-Principles Calculations. Nature 1998, 392, 694-696.
80. Yoon, W.-S.; Kim, K.-B.; Kim, M.-G.; Lee, M.-K.; Shin, H.-J.; Lee, J.-M.; Lee, J.-S.; Yo, C.-H., Oxygen Contribution on Li-Ion Intercalation− Deintercalation in Licoo2 Investigated by O K-Edge and Co L-Edge X-Ray Absorption Spectroscopy. The Journal of Physical Chemistry B 2002, 106, 2526-2532.
81. Yoon, W.-S.; Balasubramanian, M.; Chung, K. Y.; Yang, X.-Q.; McBreen, J.; Grey, C. P.; Fischer, D. A., Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li1-X Co1/3ni1/3mn1/3o2 Electrode System by Combination of Soft and Hard X-Ray Absorption Spectroscopy. Journal of the American Chemical Society 2005, 127, 17479-17487.
82. Graetz, J.; Hightower, A.; Ahn, C.; Yazami, R.; Rez, P.; Fultz, B., Electronic Structure of Chemically-Delithiated Licoo2 Studied by Electron Energy-Loss Spectrometry. The Journal of Physical Chemistry B 2002, 106, 1286-1289.
83. Dahéron, L.; Dedryvere, R.; Martinez, H.; Ménétrier, M.; Denage, C.; Delmas, C.; Gonbeau, D., Electron Transfer Mechanisms Upon Lithium Deintercalation from Licoo2 to Coo2 Investigated by Xps. Chemistry of Materials 2007, 20, 583-590.
84. Yoon, W.-S.; Grey, C. P.; Balasubramanian, M.; Yang, X.-Q.; Fischer, D. A.; McBreen, J., Combined Nmr and Xas Study on Local Environments and Electronic Structures of Electrochemically Li-Ion Deintercalated Li1− X Co1/3ni1/3mn1/3 O 2 Electrode System. Electrochemical and solid-state letters 2004, 7, A53-A55.
85. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251.
86. Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G., Phase Transitions in the Lini0. 5mn0. 5o2 System with Temperature. Chemistry of Materials 2007, 19, 1790-1800.
87. Lo, W.-T.; Yu, C.; Leggesse, E. G.; Nachimuthu, S.; Jiang, J.-C., Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li1. 2ni0. 2mn0. 6o2 Cathode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry Letters 2019, 10, 4842-4850.
88. Lee, S. H.; Moon, J.-S.; Lee, M.-S.; Yu, T.-H.; Kim, H.; Park, B. M., Enhancing Phase Stability and Kinetics of Lithium-Rich Layered Oxide for an Ultra-High Performing Cathode in Li-Ion Batteries. Journal of Power Sources 2015, 281, 77-84.
89. Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G., The Structural and Chemical Origin of the Oxygen Redox Activity in Layered and Cation-Disordered Li-Excess Cathode Materials. Nature chemistry 2016, 8, 692.
90. Li, X.; Qiao, Y.; Guo, S.; Xu, Z.; Zhu, H.; Zhang, X.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H., Direct Visualization of the Reversible O2−/O− Redox Process in Li‐Rich Cathode Materials. Advanced Materials 2018, 30, 1705197.
91. Robertson, A. D.; Bruce, P. G., Mechanism of Electrochemical Activity in Li2mno3. Chemistry of Materials 2003, 15, 1984-1992.
92. Denis, Y.; Yanagida, K.; Kato, Y.; Nakamura, H., Electrochemical Activities in Li2mno3. Journal of The Electrochemical Society 2009, 156, A417-A424.
93. Phillips, P. J.; Bareño, J.; Li, Y.; Abraham, D. P.; Klie, R. F., On the Localized Nature of the Structural Transformations of Li2mno3 Following Electrochemical Cycling. Advanced Energy Materials 2015, 5, 1501252.
94. Dogan, F.; Croy, J. R.; Balasubramanian, M.; Slater, M. D.; Iddir, H.; Johnson, C. S.; Vaughey, J. T.; Key, B., Solid State Nmr Studies of Li2mno3 and Li-Rich Cathode Materials: Proton Insertion, Local Structure, and Voltage Fade. Journal of The Electrochemical Society 2015, 162, A235-A243.
95. Hoang, K., Defect Physics, Delithiation Mechanism, and Electronic and Ionic Conduction in Layered Lithium Manganese Oxide Cathode Materials. Physical Review Applied 2015, 3, 024013.
96. Shin, Y.; Ding, H.; Persson, K. A., Revealing the Intrinsic Li Mobility in the Li2mno3 Lithium-Excess Material. Chemistry of Materials 2016, 28, 2081-2088.
97. Ye, D.; Zeng, G.; Nogita, K.; Ozawa, K.; Hankel, M.; Searles, D. J.; Wang, L., Understanding the Origin of Li2mno3 Activation in Li‐Rich Cathode Materials for Lithium‐Ion Batteries. Advanced Functional Materials 2015, 25, 7488-7496.

QR CODE