簡易檢索 / 詳目顯示

研究生: 蔡宛汝
Wan-Ru Tsai
論文名稱: 同時添加Nd和La對AZ91顯微組織 及機械性質的影響
Effects of Simultaneous Addition of Nd and La on Microstructure and Mechanical Properties of AZ91
指導教授: 丘群
Chun Chiu
口試委員: 林新智
Hsin-Chih Lin
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 整份PDF總頁數 151
中文關鍵詞: AZ91 鎂合金稀土元素稀土穩定強化相熱處理製程機械性質
外文關鍵詞: AZ91 magnesium alloy, rare earth elements, rare earth stable strengthening phase, heat treatment process, mechanical properties
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用鑄造法於 AZ91 中分別添加 1.0 wt.% Nd 以及 2.0 wt.% La 形成 AZ91-1Nd、AZ91-2La、AZ91-1Nd-2La 的合金鑄錠,將四塊金屬錠分別進行固溶處理(420°C,16 小時)以及人工時效(190°C,16小時)。探討添加不同添加物以及熱處理對合金之影響,同時對顯微結構、成分和機械性質來進行分析比較。
研究表明,與 AZ91 相比,添加稀土元素具有晶粒細化之效果,由 178 μm 下降至 160 μm 及 168 μm,且同時添加 Nd 及 La 之 AZ91-1Nd-2La 具有更小之晶粒尺寸(157 μm)。透過固溶處理及人工時效製程之試片,AZ91-1Nd-2La 之晶粒大小仍為最低值。由於 Al11RE3為穩定強化相,當 AZ91 添加稀土元素後能有效地提升其硬度值,由原先HV0.1 62.7 上升 HV0.1 72.2,AZ91-1Nd-2La 則提升至 HV0.1 77.3。透過時效處理後,AZ91-1Nd-2La 仍維持為最高值 HV0.187.3。拉伸試驗結果表明,極限抗拉強度由 140.6 MPa 上升至 205.3 MPa;延伸率由 0.85%上升至 2.61 %。由破斷面分析結果得知,AZ91 中含有河流狀及韌窩狀組織,當加入稀土元素後,斷口呈現些微杯錐破裂的形貌。綜合以上結果,同時添加 Nd 及 La 之 AZ91-1Nd-2La 具有最佳之機械性質。


In this study, 1.0 wt.% Nd and 2.0 wt.% La were added to AZ91 by casting method to form alloy ingots of AZ91-1Nd, AZ91-2La, AZ91-1Nd-2La, and the four metal ingots were respectively solution-treated(420 °C, 16 hours) and artificial aging (190 °C, 16 hours). The effect of adding different additives and heat treatment on the alloy is discussed, and the microstructure, composition and mechanical properties are analyzed and compared.
Studies have shown that compared with AZ91, the addition of rare earth elements has the effect of grain refinement, which is reduced from 178 μm to 160 μm and 168 μm, and AZ91-1Nd-2La added with Nd and La has a smaller grain size (157 μm). The grain size of AZ91-1Nd-2La is still the lowest value of the test piece through solution treatment and artificial aging process. Since Al11RE3 is a stable strengthening phase, when AZ91 is added with rare earth elements, its hardness value can be effectively improved, from HV0.1 62.7 to HV0.1 72.2, and AZ91-1Nd-2La to HV0.1 77.3. After aging treatment, AZ91-1Nd-2La still maintains the highest value of HV0.1 87.3. The tensile test results show that the ultimate tensile strength increases from 140.6 MPa to 205.3 MPa; the elongation increases from 0.85 % to 3.65 %. According to the analysis results of the fractured surface, AZ91 contains river-like and dimple structures. When rare earth elements are added, the fractured surface becomes smoother. Based on the above results, AZ91-1Nd-2La with both Nd and La added has the best mechanical properties.

目錄 摘要.............................................................................. I Abstract..........................................................................II 誌謝..............................................................................III 目錄.............................................................................. IV 圖目錄............................................................................VII 表目錄............................................................................ XI 第一章 前言........................................................................1 第二章 文獻回顧....................................................................3 2.1 鎂與鎂合金之簡介.........................................................3 2.1.1 純鎂的介紹..............................................................3 2.1.2 鎂合金的介紹..........................................................4 2.1.3 鎂合金之命名..........................................................4 2.1.4 合金元素添加的影響..............................................7 2.2 鎂合金強化機制...........................................................11 2.3.1. 晶粒細化................................................................11 2.3.2. 固溶強化................................................................13 2.3.3. 散佈強化................................................................14 2.3.4. 析出強化................................................................14 2.3.5. 應變硬化................................................................17 2.3.6. 熱膨脹係數差異....................................................17 V 2.3.7. 荷載傳遞效應........................................................18 2.3 添加稀土元素之 AZ91 合金 .......................................19 2.4 研究動機.......................................................................25 第三章 實驗方法.......................................................................26 3.1 實驗流程.......................................................................26 3.2 實驗材料.......................................................................28 3.3 熔煉設備及試片製備...................................................29 3.3.1 熔煉設備................................................................29 3.3.2 試片製備................................................................30 3.3.3 熱處理製程............................................................30 3.4 分析儀器.......................................................................31 3.4.1 光學顯微鏡............................................................31 3.4.2 場發式掃描電子顯微鏡........................................32 3.4.3 X 光繞射分析儀....................................................34 3.5 機械性質測試...............................................................38 3.5.1 維氏硬度機............................................................38 3.5.2 動態拉伸試驗機....................................................38 第四章 結果與討論...................................................................41 4.1 顯微結構及成分分析...................................................41 VI 4.1.1 AZ91D 原材..........................................................41 4.1.2 AZ91D+1.0Nd 之鑄錠...........................................51 4.1.3 AZ91D+2.0La 之鑄錠 ...........................................62 4.1.4 AZ91D+1.0Nd+2.0La 之鑄錠...............................72 4.1.5 熱處理之鑄錠........................................................82 4.1.5.1 固溶處理 ......................................................82 4.1.5.2 時效處理 ......................................................96 4.2 機械性質.....................................................................115 4.2.1 硬度試驗..............................................................115 4.2.2 拉伸試驗..............................................................117 4.2.3 破斷面觀察..........................................................119 4.3 實驗結果討論.............................................................122 第五章 結論與未來展望.........................................................124 5.1 結論..........................................................................124 5.2 未來展望.....................................................................125 參考文獻..........................................................................126

參考文獻
[1] B. L. Mordike and T. Ebert, "Magnesium Properties- applications
- potential," Materials Science and Engineering: A, vol. 302, pp.
37-45, 2001.
[2] F. Qi, D. Zhang, X. Zhang, and X. Xu, "Effects of Mn addition
and X-phase on the microstructure and mechanical properties of
high-strength Mg-Zn-Y-Mn alloys," Materials Science and
Engineering: A, vol. 593, pp. 70-78, 2014.
[3] L.L Rokhlin, "Magnesium alloys containing rare earth metals:
structure and properties, " CRC Press, 2003.
[4] F. Kabirian, R. Mahmudi, "Impression creep behavior of a cast
AZ91 magnesium alloy," Metall Mater Trans, pp. 116-27, 2009.
[5] A. Luo, " Recent magnesium alloy development for elevated
temperature application, " Int Mater Rev, pp. 13-30, 2004.
[6] F. Kabirian, R. Mahmudi, " Effects of zirconium additions on the
microstructure of as-cast and aged AZ91 magnesium alloy, "Adv
Eng Mater, pp. 189-93, 2009.
[7] G. Pettersen, H. Westengen, R. Hoier, O. Lohne, "Microstructure
of a pressure die cast magnesium-4wt.% aluminium alloy
modified with rare earth additions, "Mater Sci Eng, pp. 207:115-
20, 1996.
[8] D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min, W.
Dengyun, "Microstructure and mechanical properties of Mg-Al
based alloy with calcium and rare earth additions, "Mater Sci
Eng, pp. 356:1-7, 2005.
[9] K. Nair, C. Mittal, "Rare earth in magnesium alloys, "Mater. Sci.
Forum, pp. 30-89, 1998.
[10] X. Xiao, C. Luo, "The morphology and crystallographic
characteristics of β-Mg17Al12 precipitates in A291Mg-Al alloy, "
Journal of Metals, pp. 37, 2001.
[11] C. Luo, X. Xiao, J. Liu, "Multiple orientation relationship and
{112}γ pseudo crystal relationship of γ-Mg17A112 precipitates in
AZ91Mg-A1 alloy, " Metals Sinica Acta, pp. 709-714, 2002.
[12] A. Ghosh and M. Ghosh, "3D FEM simulation of Al-Zn-MgCualloy during multi-pass ECAP with varying processing
routes,"Materials Today Communications, vol. 26, pp. 102-112,
2021.
[13] H. Westengen, "Magnesium Alloys: Properties and Applications,
" Dekker, 2003.
[14] "ASTM Standard Practice for Temper Designations of
Magnesium Alloys, Cast and Wrought, Designation B296-96,
"American Society for Testing and Materials, 1998.
[15] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C.
Shuai, and A. Atrens, "Formation and characteristic corrosion
behavior of alternately lamellar arranged α and β in as-cast AZ91
Mg alloy," Journal of Alloys and Compounds, vol. 770, pp. 549-
558, 2019.
[16] C. Moosbrugger, "Chapter 1 introduction to magnesium alloys,"
Engineering properties of magnesium alloys, pp. 1-10, 2017.
[17] J. Kang, C. Seok, O. Shchyglo, and I. Steinbach, "Microstructure
analyses and phase-field simulation of partially divorced eutectic
solidification in hypoeutectic Mg-Al Alloys," Journal of
Magnesium and Alloys 16, pp. 1032-1043, 2021.
[18] S. You, Y. Huang, K. U. Kainer, and N. Hort, "Recent research
and developments on wrought magnesium alloys," Journal of
Magnesium and Alloys 5, pp. 239-253, 2017.
[19] L. Leinje, K. Aunetk, and Nisanlok, "The role of magnesium
aluminuim (Mg17Al12) phase in the corrosion of magnesium alloy
AZ91," Corrosion 45, pp. 741-748, 1989.
[20] R. Ambat, N. N. Aung, and W. Zhou, "Evaluation of
microstructure effects on carrion behavior of AZ91D
magnesium," Corrosion Science, pp. 1433-1455, 2000.
[21] T. B. Massalski, J. L. Murray, L.H. Bennett, and H. Baker,
"Binary alloy phase diagrams," American Society for Metals,
Ohio, 1986.
[22] Y. Ren, B. Liu, H. Xie, and H. Li, "Characterization of
precipitates in aged Mg-4 wt% Zn alloy," Materialstoday
communication 26, pp. 626-640, 2021.
[23] M. Ali, M. A. Hussein, N. Al-Aqeeli, "Magnesium-based
composites and alloys for medical applications: A review of
mechanical and corrosion properties," Journal of Alloys and
Compounds792, pp. 1162-1190, 2019.
[24] J. B. Clark, F. N. Rhines, "Central region of the Mg-Zn phase
diagram," JOM volume 9, pp. 425-430, 1957.
[25] J.Wang, R.Lu,D.Qin, X.Huan, F.Pan, "A study of the ultrahigh
damping capacities in Mg-Mn alloys," Materials Science and
Engineering: A 560, 2013, pp. 667-671.
[26] H. Deng, Y. Yang, M. Li, X. Xion, G. Wei, and W. Xie, "Effect of
Mn content on the microstructure and mechanical properties of
Mg-6Li-4Zn-xMn alloys," Progress in Natural Science: Materials
International 27, pp. 203-217, 2021.
[27] A. A. Luo, "Recent magnesium alloy development for elevated
temperature applications," International Materials Reviews, vol.
49, no. 1, pp. 13-30, 2013.
[28] E. Karakulak, "A review: Past, present and future of grain
refining of magnesium castings," Journal of Magnesium and
Alloys 7, pp. 355-369, 2019.
[29] M. Ali, M. A. Hussein, N. Al-Aqeeli, "Magnesium-based
composites and alloys for medical applications: A review of
mechanical and corrosion properties," Journal of Alloys and
Compounds, vol. 792, pp. 1162-1190, 2019.
[30] T. G. Shusen, W. X. Zhou, S.L. Xia, "Effects of Si content and
Ca modification on microstructure and thermal expansion
property of Mg-Si alloys," Materials Chemistry and Physics 253,
pp. 126-137, 2020.
[31] M. Ali, M. A. Hussein, N. Al-Aqeeli, "Magnesium-based
composites and alloys for medical applications: A review of
mechanical and corrosion properties," Journal of Alloys and
Compounds, vol. 792, pp. 1162-1190, 2019.
[32] W. R. Zhou, Y. F. Zheng, M. A. Leeflang, J. Zhou, "Mechanical
property, biocorrosion and in vitro biocompatibility evaluations
of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent
application," Acta Biomater, vol. 9, no.10, pp. 8488-98, 2013.
[33] H. Xiru, Q. Yang, D. Zhang, F. Meng, C. Chena, Z. You, J.
Zhanga, S. Lv, J. Meng, "Microstructures and mechanical
properties of a newly developed high-pressure die casting MgZn-RE alloy," Journal of Materials Science & Technology 53, pp.
174-184, 2020.
[34] H. Bayani, E. Saebnoori, "Effect of rare earth elements addition
on thermal fatigue behaviors of AZ91 magnesium alloy," Journal
of Rare Earths, Vol. 27, No. 2, p. 255, 2009.
[35] L. Zhang, J. Zhang, C. Xu, S. Liu, Y. Jiao, L. Xu, Y. Wang, J.
Meng, R. Wu, M. Zhang, "Investigation of high-strength and
superplastic Mg-Y-Gd-Zn alloy," Materials & Design, vol. 61,
pp. 168-176, 2014.
[36] G. L. Makar and J. Kruger, "Corrosion of magnesium,"
International Materials Reviews, vol. 38, pp. 138-153, 1993.
[37] J. Xia, J. Zhang, Z. You, S. Liu, K. Guan, R. Wu, J. Wang, J.
Feng, "Towards developing Mg alloys with simultaneously
improved strength and corrosion resistance via RE alloying,"
Journal of Magnesium and Alloys 9, pp. 41-56, 2021.
[38] J. Friel, Wright, Stuart, S. Sitzman, "ASTM Grain Size by EBSD
-A New Standard," Microscopy and Microanalysis - MICROSC
MICROANAL, pp. 838-839, 2011.
[39] J. Miao, W. Sun, A. D. Klarner, A. A. Luo, "Interphase boundary
segregation of silver and enhanced precipitation of Mg17Al12
phase in a Mg-Al-Sn-Ag alloy," Scripta materialia 154, pp. 192-
196, 2018.
[40] B. Q. Shi, Y. Q. Cheng, H. Yan, R. S. Chen, W. Ke, "Hall-Petch
relationship, twinning responses and their dependences on grain
size in the rolled Mg-Zn and Mg-Y alloys," Materials science
and engineering A 743, pp. 558-566, 2019.
[41] N. Hansen, "Hall–Petch relation and boundary strengthening,"
Scripta Materialia, vol. 51, no. 8, pp. 801-806, 2004.
[42] Smith, F. William, Hashemi, Javad, "Foundations of Materials
Science and Engineering," McGraw-Hill, 4th, ISBN 978-0-07-
295358-9, 2006.
[43] N. Hansen, "Hall-Petch relation and boundary strengthening,"
Scripta Materialia, vol. 51, no. 8, pp. 801-806, 2004.
[44] M. Xu, W. Yang, J. Liang, Y. Meng, L. Zheng, "Experimental
study on the correlation between intermediate temperature
embrittlement and equi-cohesive temperature," Journal of Alloys
and Compounds vol. 610, pp. 288-2932014
[45] Callister, D. William, G. David, Rethwisch," Materials science
and engineering," John wiley & sons, Vol. 5, 2011.
[46] J. Pelleg, "Mechanical Properties of Materials," New York:
Springer, ISBN 978-94-007-4341-0, pp. 236-239, 2013.
[47] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki,
"Solid solution hardening of Ni3Al with ternary additions,"
Transactions of the Japan institute of metals, vol. 27, no. 9, pp.
648-655, 1986.
[48] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, and J.
Meng, "Strengthening effect of nano-scale precipitates in a diecast Mg-4Al-5.6Sm-0.3Mn alloy," Journal of Alloys and
Compounds, vol. 665, pp. 240-250, 2016.
[49] J. F. Nie, "Precipitation and Hardening in Magnesium Alloys,"
Metallurgical and Materials Transactions A, vol. 43, pp. 3891-
3939, 2012.
[50] H. Dieringa, "Applications: magnesium-based metal matrix
composites (MMCs)," Fundamentals of Magnesium Alloy
Metallurgy, pp. 317-341, 2013.
[51] C. R. Hutchinson, J. F. Nie and S. Gorsse, "Modeling the
precipitation processes and strengthening mechanisms in a
MgAl-(Zn) AZ91 alloy," Metallurgical and Materials
Transactions A, vo. 36, pp. 2093-2105, 2005.
[52] S. F. Hassan and M. Gupta, "Enhancing physical and
mechanical," Metallurgical and Materials Transactions A, vol.
36, no. 8, pp. 2253-2258, 2005.
[53] F. B. C. Jr. and L. M. Schetky, "Dislocation in metal," Scientific
American, vol. Vol. 193, No. 1, pp. 80-87, 1955.
[54] A. Bhaduri, "Tension," Mechanical Properties and Working of
Metals and Alloys, vol. 264, pp. 3-94, 2018.
[55] A.M.A. Mohamed and F. H. Samuel," A Review on the Heat
Treatment of Al-Si-Cu/Mg Casting Alloys," pp. 444-463, 2012.
[56] A. M. A. Mohamed, F. H. Samuel, C. Frank, "A Review on the
Heat Treatment of Al-Si-Cu/Mg Casting Alloys," Heat
Treatment-Conventional and Novel Applications, vol. 210, pp.
1249-1259, 2012.
[57] S. Kilic, I. Kacar, M. Sahin, F. Ozturk, O. Erdem, "Effects of
Aging Temperature, Time and Pre-Strain on Mechanical
Properties of AA7075 Materials Research-ibero-american,"
Journal of Materials, vol. 22, no. 5, 2019.
[58] A. J. Ardell, "Precipitation hardening," Metallurgical
Transactions A, vol. 16, pp. 2131-2165, 1985.
[59] K. N. Braszczyńska-Malik, "Precipitates of γ–Mg17Al12 Phase in
AZ91 Alloy,"Magnesium Alloys - Design, Processing and
Properties, 2010.
[60] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, J. Meng,
"Strengthening effect of nano-scale precipitates in a die-cast Mg–
4Al-5.6Sm-0.3Mn alloy," Journal of Alloys and Compounds, vol.
665, pp. 240-250, 2016.
[61] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C.
Shuai, A. Atrens, "Formation and characteristic corrosion
behavior of alternately lamellar arranged α and β in as-cast AZ91
Mg alloy," Journal of Alloys and Compounds, vol. 770, pp. 549-
558, 2019.
[62] S. J. Andersen, C. D. Marioara, J. Friis, S. Wenner, R.
Holmestad, "Precipitates in aluminum alloys, " Advances in
Physics: X, vol. 3, no. 1, Article ID 1479984, 2018.
[63] K. S. Prasad, N. E. Prasad, A. A. Gokhale, "Microstructure and
Precipitate Characteristics of Aluminum-Lithium Alloys,"
Aluminum-lithium Alloys, Processing, Properties, and
Applications, pp. 99-137, 2014.
[64] A. Somoza, A. Dupasquier, "Vacancies in aluminum and solutevacancy interactions in aluminum alloys," Fundamentals of
Aluminum Metallurgy, pp. 386-421, 2011.
[65] J. F. Nie, "Precipitation and Hardening in Magnesium Alloys,"
Metallurgical and Materials Transactions A, vol. 43, pp. 3891-
3939, 2012.
[66] M. Rooyen, J. A. S. Maartensdijk, E. J. Mittemeijer,
"Precipitation of guinier-preston zones in aluminummagnesium; a calorimetric analysis of liquid-Quenched and
solid-Quenched alloys," Metallurgical Transactions A, vol.19,
no. 10, pp. 2433-2443, 1988.
[67] R. E. Smallman, A. H. W. Ngan, "Modern Physical Metallurgy
Modern Physical Metallurgy ," Eighth Edition, pp. 499-527,
2014.
[68] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, J. Meng,
“Strengthening effect of nano-scale precipitates in a die-cast Mg4Al-5.6Sm-0.3Mn alloy”, Journal of Alloys and Compounds
665, pp. 240-250, 2016.
[69] F. Naghdi, R. Mahmudi, J.Y. Kang, H.S. Kim, "Contributions of
different strengthening mechanisms to the shear strength of an
extruded Mg-4Zn-0.5Ca alloy," Philosophical Magazine, vol. 95,
no.31, pp. 3452-3466, 2015.
[70] M. Habibnejad-Korayem, R. Mahmudi, W. J. Poole, "Enhanced
properties of Mg-based nano-composites reinforced with Al2O3
nano-particles," Materials Science and Engineering: A, vol. 519,
no. 1-2, pp. 198-203, 2009.
[71] R. A. Jr, L. Christodoulou, "The role of equiaxed particles on the
yield stress of composites," Scripta Metallurgica et Materialia,
vol.25, no.1, pp. 9-14, 1991.
[72] J.I. Polmear, "Magnesium alloys and application," Mater.
Sci.Tech, 1994.
[73] X.M. Cui, P.C. Bai, X.H. Hou, F. Liu, X.X. Wang, L.L. Zhao,
M.Y. Chen, "Relationship between structural stabilities and
electronic structures of Mg17Al12, Al2Ca, Al2Nd and Al2Er
intermetallic compounds studied by first-principles," Rare Metal
Mater. Eng. 45, pp. 1044-1049, 2016.
[74] Q. Wang, Y. Zhu, W. Chen, W. Ding, M. Mabuchi, "Effect of Sb
on the microstructure and mechanical properties of AZ91
magnesium alloy," Metallurgical Mater Transactions. 2001.
32(3), pp. 787-794, 2001.
[75] Gschneidner, K.A. Eyring, "Handbook on the Physics and
Chemistry of Rare Earths," Amsterdam: North Holland, 1978.
[76] D. Wenwen, S.Yangshan, M. Xuegang, X. Feng, Z. Min, W.
Dengyun, "Microstructure and mechanical properties of Mg-Al
based alloy with calcium and rare earth additions," Mater Sci
Eng sciencedirect, pp. 356(1-2):1-7, 2003.
[77] Y. Wang, S. Guan, X. Zeng, W. Ding, "Effects of RE on the
microstructure and mechanical properties of Mg-8Zn-4Al
magnesium alloy," Mater Sci Eng, pp. 416(1-2):109-18, 2006.
[78] Y. Yang, X. Li, "Influence of neodymium on high cycle fatigue
behavior of die cast AZ91D magnesium alloy," Journal of rare
earths, Vol. 28, No. 3, Jun, pp. 456, 2010.
[79] S.Kulwinder, M.Ritesh, "The effect of lanthanum on
Microstructure and Mechanical properties of stir casted Mg
alloy," Materials Today: Proceedings 5, pp. 6360-6369, 2018.
[80] A. International, "Standard Practice for Temper Designations of
Magnesium Alloys, Cast and Wrought," ASTM Standard B275,2008.
[81] L.B. Ren, G.F. Quan, M.Y. Zhou, Y.Y. Guo, Z.Z. Jiang, Q. Tang,
" Effect of Y addition on the aging hardening behavior and
precipitation evolution of extruded Mg-Al-Zn alloys,"Mater. Sci.
Eng, pp. 195-207, 2017.
[82] J. Goldstein, J. A. GOLDSTEIN, Lyman, D.E. Newbury, D.C.
Joy, "Scanning Electron Microscopy and X-Ray Microanalysis,"
2003.
[83] 林麗娟, "X 光繞射原理及其應用, "X 光材料分析技術與應用
專題,工業材料 86 期, pp. 100-109, 1994.
[84] Julenkarlasaray, "Bragg legea.jpg, " Wikimedia Commons, the
free media repository, 2014.
[85] J.Epp, "X-ray diffraction (XRD) techniques for materials
characterization," Materials Characterization Using
Nondestructive Evaluation (NDE) Methods, pp. 81-124, 2016.
[86] V.D. Mote, Y. Purushotham, B. N. Dole, "Williamson-Hall
analysis in estimation of lattice strain in nanometer-sized ZnO
particles," Journal of Theoretical and Applied Physics, vol. 6, no.
6, pp. 1-8, 2012.
[87] A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi," Xray
analysis of ZnO nanoparticles by Williamsone-Hall and size
strain plot methods," Solid State Sciences, vol. 13, pp. 251-256,
2011.
[88] G.K. Williamson, R.E. Smallman, "Dislocation densities in some
annealed and cold-worked metals from measurements on the Xray debye-scherrer spectrum," Philosophical Magazine, vol. 8,
no. 1, pp. 34-46, 1956.
[89] Davis, R. Joseph, "Tensile testing 2nd," ASM International,
ISBN, 978-0-87170-806-9, 2004.
[90] Czichos, Horst, "Springer Handbook of Materials Measurement
Methods," Berlin: Springer, pp. 303-304, 2006.
[91] Beer, Johnston, "Mechanics of Materials," McGraw Hill, 5th ed,
pp. 53-56, ISBN 978-0-07-352938-7, 2006.
[92] Maccaferri, Emanuele, "How Nanofibers Carry the Load:
Toward a Universal and Reliable Approach for Tensile Testing of
Polymeric Nanofibrous Membranes," Macromolecular Materials
and Engineering, 2021.
[93] Carroll, F.Daniel, Wiederhorn, M.Sheldon, Roberts, " Technique
for Tensile Creep Testing of Ceramics," Journal of the American
Ceramic Society, 72 (9) , pp. 1610-1614, 1989.
[94] O. Senkov, F. HFroes, " Thermohydrogen processing of titanium
alloys," International Journal of Hydrogen Energy 24, pp. 565-
576, 1999.
[95] X. Cui, Z. Yu, F. Liu, Z. Du, P. Bai, "Influence of secondary
phases on crack initiation and propagation during fracture
process of as-cast Mg-Al-Zn-Nd alloy," Materials Science &
Engineering A, pp. 708-714, 2019.
[96] Z. Jinghuai, L. Shuju, W. Ruizhi, H. Legan, Z. Milin, " Recent
developments in high-strength Mg-RE-based alloys: Focusing on
Mg- d and Mg-Y systems," Journal of Magnesium and Alloys 6,
pp. 277-291, 2018.
[97] R. Arrabal, B. Mingo, A. Pardo, E. Matykina, M. Mohedano,
M.C. Merino, A. Rivas, A. Maroto, "Role of Nd on the
microstructure and atmospheric corrosion behaviour of AZ91 ascast magnesium alloy," Corrosion Science Volume 97, pp. 38-48, 2015.

無法下載圖示 全文公開日期 2024/09/27 (校內網路)
全文公開日期 2024/09/27 (校外網路)
全文公開日期 2024/09/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE