簡易檢索 / 詳目顯示

研究生: Taufik ABIDIN
Taufik - ABIDIN
論文名稱: 新型含有芘之不對稱三苯胺及笏結構之共轭高分子:合成, 理論, 光學, 電化學及電致變色性質
Novel Conjugated Polyfluorene with Unsymmetrical Triarylamine Containing Pyrene : Synthesis, Theoretical, Optical, Electrochemical and Electrochromic Properties
指導教授: 廖德章
Der-Jang LIAW
口試委員: 江志強
Jyh-Chiang Jiang
汪昆立
Kun-li Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 50
中文關鍵詞: 共軛聚合物電化學電致變色非對稱三芳胺
外文關鍵詞: Conjugated polymers, Electrochemistry, Electrochromic, Pyrene, Unsymmetrical, Triarylamine
相關次數: 點閱:405下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用鈴木偶合反應,合成含芘取代三芳胺基的兩個共軛高分子,PHPYFLC8及PHPYFLC6,其玻璃態轉化溫度、氮氣下10%質量減少溫度以及800°C下焦炭產率分別達到了169oC、445oC、61.8%(PHPYFLC8)以及206oC、456 oC、59.4%(PHPYFLC6)。迴圈伏安圖顯示,兩個高分子在0.65 V、0.98 V(PHPYFLC8)及0.66 V、1.02 V(PHPYFLC6)分別有兩個氧化還原對。其最高佔據分子軌道和最低未占分子軌道分別為 -4.95、-2.31 (PHPYFLC8)及-4.97、-2.16 eV(PHPYFLC6)。將該兩種高分子溶解於多種溶劑中,用365奈米單色光源照射可發出包括綠色、黃色、粉紅色以及白色等光。在進行電致變色實驗中,兩個高分子在電壓由0至1.5V變化過程中均可逆地由黃綠色變為深紫色。PHPYFLC6高分子在ITO導電玻璃上能夠形成比PHPYFLC8更加緊密的薄膜,更有利於電致變色實驗中電子的轉移。此外,通過理論計算亦得到了與電變色實驗所得吸收資料吻合的計算結果。


Two novel conjugated polymers, PHPYFLC8 and PHPYFLC6, containing unsymmetrical substituted bi-triarylamine with pyrene moiety were synthesized via Suzuki coupling. The glass transition temperature (Tg), 10% weight-loss temperatures (Td10) in nitrogen, and char yield at 800 oC in nitrogen of PHPYFLC8 were 169oC, 445oC, 61.8% respectively, while PHPYFLC6 were 206oC, 456 oC, 59.4%, respectively. Cyclic voltammogram (CV) of the polymer film cast onto an indium-tin oxide (ITO)-coated glass substrate exhibited two reversible redox couples at 0.65 and 0.98 V for PHPYFLC8 vs Ag/Ag+ in acetonitrile solution, while PHPYFLC6 were 0.66 and 1.02 V. The HOMO and LUMO levels for PHPYFLC8 were -4.95 and -2.31 eV, respectively, while for PHPYFLC6, the HOMO and LUMO levels were -4.97 and -2.16 eV respectively. The polymers dissolved in different solvents can emit green, yellow, pink and even white color after excitated by a 365 nm monochromatic light source. The polymer films revealed excellent stability of electrochromic characteristics, with a color change from yellow green (neutral) to deep purple (oxidized) at applied potentials ranging from 0 to 1.5 V which suggested that the polymers are good electrochromic materials. The PHPYFLC6 forms a more compact film than PHPYFLC8 when cast onto the ITO-coated glass, which facilitates the electron transfer for the electrochromism phenomena. The theoretical study conducted is in agreement with the experimetal results.

Table of Contents (目錄) 中文摘要 I 英文摘要(Abstract) II Acknowledgements III Contents IV List of Figure V List of Tables VII 1. Introduction 2 2. Experimental Section 3 2.1 Materials…… 3 2.2 Instrumentation. 3 2.3 Synthesis of monomer 5 2.4 Synthesis of polymers. 16 3. Results and Discussion 19 3.1 Synthesis and basic characterization.. 16 3.2 Optical properties. 28 3.3 Electrochemical properties 31 3.4 Electrochromic characteristics 33 3.5 Film thickness 35 3.6 Theoretical calculation and simulation 36 4. Conclusion 38 List of Figures Fig.1 Synthesis of monomer.. 5 Fig.2 1H NMR spectra of PHPYNH in CDCl3. 7 Fig.3 Infrared spectra of PHPYNH in KBr.. 7 Fig.4 13C NMR spectra of PHPYNH in CDCl3.. 7 Fig.5 UV spectra of PHPYNH in THF 7 Fig.6 PL spectra of PHPYNH in THF, excited at 385 nm.. 8 Fig.7 1H NMR spectra of PHPYNO2 in CDCl3 9 Fig.8 Infrared spectra of PHPYNO2 in KBr 9 Fig.9 UV spectra of PHPYNO2 in THF.. 10 Fig.10 PL spectra of PHPYNO2 in THF, excited at 394 nm 10 Fig.11 13C NMR spectra of PHPYNH in CDCl3.. 11 Fig.12 1H NMR spectra of PHPYNH2 in CDCl3 12 Fig.13 Infrared spectra of PHPYNH2 in KBr.. 12 Fig.14 13C NMR spectra of PHPYNH2 in CDCl3.. 13 Fig.15 UV spectra of PHPYNH2 in THF 13 Fig.16 PL spectra of PHPYNH2 in THF, excited at 414 nm.. 13 Fig.17 UV spectra of PHPYDIBR in THF. 14 Fig.18 PL spectra of PHPYDIBR in THF, excited at 400 nm.. 15 Fig.19 Infrared spectra of PHPYDIBR in KBr.. 15 Fig.20 Synthesis of polymers. 17 Fig.21 Infrared spectra of PHPYFLC8 in KBr.. 18 Fig.22 Structure and atom assignment of PHPYDIBR and PHPYFLC8 19 Fig.23 1 H and COSY NMR spectra of PHPYDIBR in CDCl3 20 Fig.24 13C NMR spectra of of PHPYDIBR in CDCl3. 21 Fig.25 HSQC NMR spectra of PHPYDIBR in CDCl3 21 Fig.26 HMBC NMR spectra of PHPYDIBR in CDCl3.. 22 Fig.27 1H and COSY NMR spectra of PHPYFLC8 in C6D5Cl 23 Fig.28 13C NMR spectra of PHPYFLC8 in C6D5Cl 24 Fig.29 HMBC NMR spectra of PHPYFLC8 in C6D5Cl 24 Fig.30 HSQC NMR spectra of PHPYFLC8 in C6D5Cl 25 Fig.31 TGA graph of PHPYFLC8 and PHPYFLC6. 27 Fig.32 DSC graph of PHPYFLC8 and PHPYFLC6. 27 Fig.33 Normalized UV spectra of (a) PHPYFLC8 and (b) PHPYFLC6 28 Fig.34 PL spectra of (a) PHPYFLC8 and (b) PHPYFLC6 29 Fig.35 Image of PHPYFLC8 in various solvents under 365 nm lamp. 30 Fig.36 Oxidation of the polymers from neutral state to radical cation to dication 31 Fig.37 CVs of (a) PHPYFLC8 (b) PHPYFLC6 and (c) ferrocene 33 Fig.38 Electrochromic behavior of (a) PHPYFLC8 and (b) PHPYFLC6 in a thin film……… 34 Fig.39 Current consumption and potential step absorptometry of (a) PHPYFLC8 and (b)PHPYFLC6…. 35 Fig.40 SEM cross-section image of (a) PHPYFLC8 (b) PHPYFLC6. 36 Fig.41 Theoretical simulation result and the model compound, MPHPYFLC8 38 List of Tables Table 1 GPC Data of PHPYFLC8.. 26 Table 2 Thermal and Optical Properties. 26 Table 3 Electrochemical and Optical Properties of the Conjugated Polymers (in film form) 31

1. Beaujuge, P. M., Vasilyeva, S. V., Ellinger, S., McCarley, T. D., Reynolds, J. R., Macromolecules, Vol.42, pp.3694-3706 (2009)
2. Han, F. S., Higuchi, M., Kurth, D. G., Adv Mater, Vol.19, 3928-3931 (2007)
3. Udum, Y. A., Yildiz, E., Gunbas, G., Toppare, L., J Polym Sci Part A: Polym Chem, Vol.46, pp.3723-3731 (2008)
4. Thompson, B. C., Kim, Y. G., McCarley, T. D., Reynolds, J. R., J Am Chem Soc, Vol.128, pp.12714-12725 (2006)
5. Michinobu, T., Kumazawa, H., Otsuki, E., Usui, H., Shigehara, K., J Polym Sci Part A: Polym Chem, Vol.47, pp.3880-3891 (2009)
6. Elschner, A., Heuer, H. W., Jonas, F., Kirchmeyer, S., Wehrmann, R., Wussow, K., Adv Mater, Vol.13, pp.1811-1814 (2001)
7. Winter, A., Friebe, C., Chiper, M., Hager, M. D., Schubert, U. S., J Polym Sci Part A: Polym Chem, Vol.47, pp.4083-4098 (2009)
8. Forrest, S. R. Nature, Vol.428, pp. 911-918 (2004)
9. Liao, L., Cirpan, A., Chu, Q., Karase, F. E., Pang, Y., J Polym Sci Part A: Polym Chem, Vol.45, pp.2048-2058 (2007)
10. Yu, G., Gao, J., Hummelen, J. C., Wudl, F., Heeger, A., J. Science, Vol.270, pp. 1789-1791 (1995)
11. Kitamura, M., Arakawa, Y., Appl Phys Lett, Vol.95, pp.23503-25033 (2009)
12. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv Mater, Vol.14, pp.99-117 (2002)
13. Liu, P., Wu, Y., Pan, H., Li, Y., Gardner, S., Ong, B. S., Zhu, S., Chem Mater, Vol.21, pp.2727-2732 (2009)
14. Roberts, M. E., LeMieux, M. C., Sokolov, A. N., Bao, Z., Nano Lett, Vol.9, pp. 2526-2531 (2009)
15. Durben, S., Nickel, D., Kruger, R. A., Sutherland, T. C., Baumgartner, T., J Polym Sci Part A: Polym Chem, Vol.46, pp.8179-8190 (2008)
16. Segura, J. L., Martin, N., Guldi, D. M., Chem Soc Rev, Vol.34, pp.31-47 (2005)
17. Chang, Y. T., Hsu, S. L., Su, M. H., Wei, K. H., Adv Mater, Vol.21, pp.2093-2097 (2009)
18. Zhou, E. J., Tan, Z. A., He, Y. J., Yang, C. H., Li, Y. F., J Polym Sci Part A: Polym Chem, Vol.45, pp.629-638 (2007)
19. Feng, L., Zhu, C., Yuan, H., Liu, L.,, Lv F., and Wang, S., Chem. Soc. Rev., Vol.42, pp.6620-6633 (2013)
20. Koner, A. L., Krndija, D., Hou, Q., Sherratt, D. J., Howarth M., ACS Nano Vol.7, pp.1137–1144 (2013)
21. Rochat, S , Swager, T.M., ACS Appl. Mater. Interfaces, Vol.5, pp.4488 – 4502 (2013)
22. Ling, Q. D., Liaw, D. J., Zhuc, C., Chanc, D. S. H., Kang, E.T., Neoh, K. G., Prog Polym Sci, Vol.33, pp. 917-978 (2008)
23. Ling, Q. D., Liaw, D. J., Teo, E. Y. H., Zhu, C., Chan, D. S. H.,Kang, E. T., Neoh, K. G., Polymer, Vol.48, pp.5182-5201(2007)
24. Tang, C., Xu, H., Liu, F., Liu, X. D., Lai, W. Y., Wang, X. L., Huang W., Synthetic Metals, Vol.174, pp.33–41 (2013)
25. Neo, W. T., Cho, C. M., Song, J., Chin, J. M., Wang, X., He, C., Chan, H. S. O., Xu, J., European Polymer Journal, Vol.49, pp.2446–2456 (2013)
26. Scherf, U., List, E. J. W., Adv Mater, Vol.14, pp.477-487 (2002)
27. Naga, N., Tagaya, N., Noda, H., Imai, T., Tomoda, H., J Polym Sci Part A: Polym Chem, Vol.46, pp.4513-4521 (2008)
28. Wang, B., Shen, F., Lu, P., Tang, S., Zhang, W., Pan, S., Liu, M., Liu, L., Qiu, S., Ma, Y., J Polym Sci Part A: Polym Chem, Vol.46, pp.3120-3127 (2008)
29. Xu, Y., Guan, R., Jiang, J., Yang, W., Zhen, H., Peng, J., Cao, Y., J Polym Sci Part A: Polym Chem, Vol.46, pp.453-463 (2008)
30. Ranger, M., Rondeau, D., Leclerc, M., Macromolecules, Vol.30, pp.7686-7691 (1997)
31. Janietz, S., Bradley, D. D. C., Grell, M., Giebeler, C., Inbasekaran, M., Woo, E. P., Appl Phys Lett, Vol.73, pp.2453-2455 (1998)
32. Allard, S., Forster, M., Souharce, B., Thiem H., and Scherf, U., Angew. Chem Int. Ed., Vol. 47, pp.4070–4098 (2008)
33. Oosterbaan, W. D., Bolsée, J. C., Gadisa, A., Vrindts, V., Bertho, S., D'Haen, J., Cleij, T. J., Lutsen, L., McNeill, C. R., Thomsen, L., Manca, J. V., Vanderzande D., Adv Funct. Mater., Vol.20, pp.792–802 (2010)
34. Wang, B., Zhang, J., Tam,H. L., Wu, B. Zhang,W., Chan, M. S., Pan, F., Yu, G., Zhu, F.m, Wong, M. S., Polym. Chem, Vol.5, pp.836-843 (2014)
35. Mitchell, R. H., Lai, Y.H., Williams, R. V., J. Org. Chem., Vol.44, pp.4733–4735 (1979)
36. Liaw, D. J., Hsu, P. N., Chen, W. H., Lin, S. L., Macromolecules, Vol.35, pp.4669-4676 (2002)
37. Oishi, Y., Takado, H., Yoneyama, M., Kakimoto, M., Imai, Y., J Polym Sci Part A: Polym Chem, Vol.28, pp.1763-1769 (2008)
38. Li, W. M., Li, S. H., Zhang, Q. Y., Zhang, S. B., Macromolecules, Vol.40, pp.8205-8211 (2007)
39. Zhu, Y., Gibbons, K. M., Kulkarni, A. P., Jenekhe, S. A., Macromolecules, Vol.40, pp.804-813 (2007)
40. Jenekhe, S. A., Osaheni, J. A., Science, Vol.265, pp.765-768 (1994)
41. Teetsov, J., Fox, M. A., J. Mater Chem, Vol.9, pp.2117-2122 (1999)
42. Wu, H. Y., Wang, K.L., Jiang, J.C., Liaw, D. J., Lee, K. R., Lai, J. Y., Chen, C.L., J. Polym. Sci. A: Polym. Chem , Vol.48, pp.3913-3923 (2010)
43. Grazulevicius, J. V., Strohriegl, P., Pielichowski, J., Pielichowski, K., Prog Polym Sci, Vol.28, pp.1297-1353 (2003)
44. Frisch,M. J., G. W. T., Schlegel,H. B., Scuseria,G. E., Robb,M. A., Cheeseman,J. R., Scalmani,G., Barone,V., Mennucci, B., Petersson,G. A., Nakatsuji,H.,Caricato,M., Li,X., Hratchian,H. P., Izmaylov,A. F., Bloino,J., Zheng,G., Sonnenberg,J. L.,Hada,M., Ehara,M., Toyota,K., Fukuda,R., Hasegawa,J., Ishida,M., Nakajima,T., Honda,Y., Kitao,O., Nakai,H., Vreven,T., MontgomeryJr.,J. A., Peralta,J. E., Ogliaro,F., Bearpark,M., Heyd,J. J., Brothers,E., Kudin,K. N., Staroverov,V. N., Kobayashi,R., Normand,J., Raghavachari,K., Rendell,A., Burant,J. C., Iyengar,S. S., Tomasi,J., Cossi,M., Rega,N., Millam,J. M., Klene,M., Knox,J. E., Cross,J. B., Bakken,V., Adamo,C., Jaramillo,J., Gomperts,R., Stratmann,R. E., Yazyev,O., Austin,A. J., Cammi,R., Pomelli,C., Ochterski,J. W., Martin,R. L., Morokuma,K., Zakrzewski,V. G., Voth,G. A., Salvador,P., Dannenberg,J. J., Dapprich,S., Daniels,A. D., Farkas,Ö., Foresman,J. B., Ortiz,J. V., Cioslowski,J., and Fox D. J., Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT 2009.
45. Becke, A. D., The Journal of Chemical Physics, Vol.98, pp.5648-5652 (1993)
46. Lee, C., Yang, W., Parr, R. G., Physical Review B, Vol.37, pp.785-789. (1988)
47. Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., Curtiss, L. A., Journal of Computational Chemistry, Vol.22, pp.976-984. (2001)
48. Rassolov, V. A.; Pople, J. A.; Ratner, M. A.; Windus, T. L., The Journal of Chemical Physics, Vol.109, pp.1223-1229 (1998)
49. Gorelsky, S. I., AOMix:  Program for Molecular Orbital Analysis. York University:  Toronto, Canada (1997)
50. Gorelsky, S. I., Comprehensive Coordination Chemistry II. Elsevier Pergamon: New York, Vol.2 (2003)

QR CODE