簡易檢索 / 詳目顯示

研究生: 邱兆宇
Chao-Yu Chiu
論文名稱: 具可靠度拘束桁架結構最佳化設計-使用改良的遺傳演算法
Optimal Design of Truss-Structures with Reliability Constraints Using Improved Genetic Algorithms
指導教授: 呂森林
Sen-Lin Lu
口試委員: 楊條和
Tyau-Her Young
黃聰耀
Tsong-Yau Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 力法改良的遺傳演算法可靠度拘束
外文關鍵詞: Force method, Improved genetic algorithms, Reliability constraints
相關次數: 點閱:343下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之目標在發展一桁架最佳化的方法,來最少化桁架重量及其使用斷面型式的數量。文中桁架最佳化設計採用力法及遺傳演算法。以斷面積及節點座標為設計變數。在改良式的遺傳演算法中,同時導入了無參數化適應懲罰策略的懲罰函數法及減少設計變數字串長度的設計空間窄化技術。其拘束條件包括元件應力、細長比、節點位移及挫曲應力。除此,考量到結構及其負荷皆具有其不確定性,本文將桁架的參數、負荷與強度視為隨機變數,採用可靠度拘束進行最佳化。文中列舉了數個範例,並與過去文獻作比較。在確定系統,其結果相當接近甚至更佳。在隨機系統,結果顯示最佳化重量隨著隨機變數之變異係數與要求之可靠度增加而遞增。


    The aim of this thesis is to develop a method to optimize trusses in minimum weight and number of cross-section types used. The optimization of trusses is performed using the force method and genetic method. The cross-section areas and nodal coordinates are taken into account as design variables. In the modified genetic algorithm, both the penalty function of parameter-less adaptive penalty scheme and the narrowing design space technology by contraction of the length of strings are employed simultaneously. The constraints consist of member stresses, slenderness ratios, nodal displacements and buckling stresses. In addition considering the inherent uncertainties on structures and their loads, the truss parameters, loads and strengths are also considered as random variables in the study. Accordingly the optimization is proceeded using reliability based constraints. In the thesis several numerical examples are illustrated and their results are compared with the reference papers. In the case of deterministic system, they are much closed and the present results are even better. In the case of random system, it shows that the optimum weight increases with both the coefficient of variation of random variable and the required reliability.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖 目 錄 VIII 表 目 錄 XI 符 號 對 照 表 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 2 1.3 文獻回顧 2 1.4 論文架構 5 第二章 結構分析方法-力法 7 2.1 前言 7 2.2 力法 8 2.2.1 輔能 8 2.2.2 Crotti-Engesser定理 9 2.2.3 柔度係數與柔度矩陣 11 2.2.4 位移之相容性 14 2.2.5 力法分析 14 第三章 最佳化方法 21 3.1 前言 21 3.2 離散變數最佳化設計問題 22 3.3 遺傳演算法 23 3.4 遺傳演算法之流程 34 3.5 設計空間的窄化 35 3.6 桁架結構最佳化設計問題之數學模型 37 3.6.1 單目標最佳化 37 3.6.2 多目標最佳化 39 第四章 可靠度拘束最佳化設計 41 4.1 前言 41 4.2 可靠度分析理論 42 4.3 機率分佈函數 43 4.4 多維隨機變數之非線性函數平均值及變異數 45 4.5 強度-應力干涉理論 46 4.6 可靠度應用在桁架結構最佳化設計 49 第五章 數值範例與討論 54 5.1 單目標最佳化設計 55 5.1.1 範例一:尺寸最佳化(設計變數:桿件斷面尺寸)............. 55 5.1.2 範例二:型態最佳化(設計變數:桿件斷面尺寸及節點位置). 70 5.1.3 範例三:考慮挫曲(設計變數:桿件斷面尺寸及節點位置)..... 76 5.2 多目標最佳化設計 83 5.3 可靠度最佳化設計 89 5.3.1 範例五:單目標可靠度拘束最佳化設計 89 5.3.2 範例六:多目標可靠度拘束最佳化設計 96 第六章 結論與未來展望 102 6.1 結論 102 6.2 未來展望 103 附件(一) 空間25桿桁架力變換矩陣bp與bq 104 附件(二) 平面10桿桁架力變換矩陣bp與bq 106 參考文獻 107 作者簡介 110

    [1] Kirsch, U., Optimum Structural Design, Concepts, Methods and Applications, McGraw-Hill, New York, 1981.
    [2] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, New York, 1989.
    [3] Jenkins, W.M., “Towards structural optimization via the Genetic algorithm,” Computers and Structures, vol. 40, pp. 1321-1327, 1991.
    [4] Rajeev, S. and Krishnamoorthy, C.S., “Discrete optimization of structures using genetic algorithms,” Journal of Structural Engineering (ASCE), vol. 118, pp. 1233-1250, 1992.
    [5] Rajan, S.D., “Sizing, shape, and topology design optimization of trusses using genetic algorithm,” Journal of Structural Engineering (ASCE), vol. 121, pp. 1480-1487, 1995.
    [6] Ohsaki, M., “Genetic algorithm for topology optimization of trusses,” Computers and Structures, vol. 57, pp. 219-225, 1995.
    [7] Wu, Shyue-Jian and Chow, Pei-Tse, “Integrated discrete and configuration optimization of trusses using genetic algorithms,” Computers and Structures, vol. 55, pp. 695-702, 1995.
    [8] Galante, M. and Oñate, E., “Genetic algorithms as an approach to optimize real-world trusses,” International Journal for Numerical Methods in Engineering, vol. 39, pp. 361-382, 1996.
    [9] Rajeev, S. and Krishnamoorthy, C.S., “Genetic algorithms-based methodologies for design optimization of trusses,” Journal of Structural Engineering (ASCE), vol. 123, pp. 350-358, 1997.
    [10] Hasançebi, O. and Erbatur, F., “Layout optimization of trusses using improved GA methodologies,” Acta Mechanica, vol. 146, pp. 87-107, 2001.
    [11] Tang, W., Tong, L. and Gu, Y., “Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables,” International Journal for Numerical Methods in Engineering, vol. 62, pp. 1737-1762, 2005.
    [12] Venkayya, V.B., “Design of optimum structures,” Computers and Structures, vol. 1, pp. 265-309, 1971.
    [13] Kaneko, I., Lawo, M. and Thierauf, G., “On computational procedure for the force method,” International Journal for Numerical Methods in Engineering, vol. 18, pp. 1469-1495, 1982.
    [14] Kaveh, A., “Recent developments in the force method of structural analysis,” Applied Mechanics Review, vol. 45, pp. 401-418, 1992.
    [15] Kaveh, A. and Kalatjari, V., “Genetic algorithm for discrete sizing optimal design of trusses using the force method,” International Journal for Numerical Methods in Engineering, vol. 55, pp. 55-72, 2002.
    [16] Kaveh, A. and Kalatjari, V., “Size/geometry optimization of trusses by the force method and genetic algorithm,” Zeitschrift fur Angewandte Mathematik und Mechanics, vol. 84, pp. 347-357, 2004.
    [17] Kaveh, A. and Rahami, H., “Analysis, design and optimization of structures using force method and genetic algorithm,” International Journal for Numerical Methods in Engineering, vol. 65, pp. 1570-1584, 2006.
    [18] Kaveh, A. and Rahami, H., “Nonlinear analysis and optimal design of structures via force method and genetic algorithm,” Computers and Structures, vol. 84, pp. 770-778, 2006.
    [19] Lewis, E.E., Introduction to Reliability Engineering, John Wiley & Sons, New York, 1986.
    [20] Rao, S.S., Reliability Based Design, Mc Graw-Hill, 1992.
    [21] Swift, K.G., Raines, M. and Booker, J.D. “Case studies in probabilistic design,” Journal of Engineering Design, Vol.11, No.4, pp.299-316, 2000.
    [22] Li, J.L. and Wu, J., “Reliability-based optimal design,” Proceeding of The Fourth ROC Symposium on Reliability and Maintainability, November 23-24, Taipei, Taiwan, pp.109-120, 2001.
    [23] Painton, L.A. and Campbell, J.E., “Genetic algorithms in optimization of system reliability,” IEEE Transactions on Reliability, Vol.44, No.2 June, pp172-178, 1995.
    [24] Coit, D.W. and Smith, A.E., “Reliability optimization of series-parallel system using a genetic algorithm,” IEEE Transactions on Reliability, Vol.45, No.2, pp254-266, 1996.
    [25] Tsai, Y.T., Hsu, F.S. and Shen, C.L., “A study of optimizing reliability design using genetic algorithms,” The Chinese Society of Mechanical Engineers, Nov.23-24, 2007.
    [26] Barbosa, H.J.C. and Lemonge, A.C.C., “A new adaptive penalty scheme for genetic algorithms,” Information Sciences, vol. 156, pp. 215-251, 2003.
    [27] 曾彥霖,“基於可靠度之引擎吊架最佳化設計”, 碩士論文, 台灣科技大學, 機械工程系, 2008.

    QR CODE