簡易檢索 / 詳目顯示

研究生: 陳映喬
YING-CHIAO CHEN
論文名稱: 可攜式非接觸式表面粗糙度與輪廓量測系統
Development of a Portable Non-contact Measuring System for Surface Roughness and Surface Profile
指導教授: 修芳仲
Fang-Jung Shiou
口試委員: 鄧昭瑞
Geo-Ry Tang
郭重顯
Chung-Hsien Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 142
中文關鍵詞: 可攜式光學量測系統表面粗糙度表面輪廓CCD Camera非接觸式量測
外文關鍵詞: portable optical measurement system, surface roughness, surface profile, CCD Camera, non-contact measurement
相關次數: 點閱:270下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨為開發可攜帶式非接觸式表面量測系統,對拋光後的表面輪廓及粗糙度做評估分析。雷射光源經過擴束透鏡,利用光柵形成一條至三條的平行光線,投射於待測物表面後,反射在成像屏幕上,再以CCD 工業相機擷取屏幕上之影像進行分析處理。
    本研究以LabVIEW作為主要撰寫程式,搭配NI Vision Assistant,可將擷取到的影像作影像濾波初步規劃,並將產生的程式碼於LabVIEW 做圖形化程式撰寫。
    本論文分為粗糙度量測與曲面輪廓量測兩部分。粗糙度的量測為利用反射光能量法,分析粗糙度值與其反射成像的關係,找到適合的門檻值以用於評估試片之粗糙度,並且嘗試將量測系統整合於機械手臂上,作加工後的即時量測。
    曲面輪廓量測可針對2D的圓柱面,量測其曲率,或檢測平面拋光試片的平整度。利用不同曲面會反射雷射光條紋於屏幕上不同位置,建立曲面的反射光點位置與表面參數的關係方程式,之後分別對待測物之高度、X軸及Y軸旋轉角進行關係方程式的驗證。
    本系統所使用粗糙度量測門檻值為90,可針對粗糙度0.02μm-0.2μm的試片進行量測;曲面量測則由關係方程式量測圓柱體,經實驗結果與接觸式量測系統所取得的數據比較,達到相當程度吻合。


    The purpose of this study is to develop a portable non-contact surface measurement system that can be used to evaluate the surface profile and roughness after polishing. The laser beam, passing through the collimating lens and by changing the grating mask, one to three parallel beams can be generated. The beams projected on the object and then reflected on the imaging screen. Then, the image on the screen were captured by the CCD industrial camera for further analysis.
    In this study, LabVIEW is used as the main programming tool. With the help of the NI Vision Assistant software, the captured image can be filtered in the first stage and the generated code can be written in LabVIEW with graphical program.
    This study is divided into two parts: surface roughness measurement and surface contour measurement. The surface roughness of a test object is measured by using the reflected light intensity method, the suitable threshold value, which was used to evaluate the roughness of the test piece, has been found by analyzing the relationship between the roughness value and the reflection image. The measurement system is attempted to be integrated with the robot arm for the possible in-process measurement after the surface finishing processing has been achieved.
    Regarding the surface contour measurement, different curved surfaces will reflect the laser light fringes at different positions on the screen. A relationship equation between the position of light spots, which reflect from the curved surface and the surface parameter, and then the height, the X-axis and the Y-axis rotation angle of the object, has been verify by the derived relational equations, respectively.
    According to the experimental results, the threshold value of the roughness measurement for our system was 90, the test piece with the surface roughness of 0.02μm-0.2μm can be measured. With regard to the surface profile measurement, the result was verified by the relational equation. The actual measurement of the cylindrical profile of a test object is consistent with the data obtained by the contact measurement system.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 研究方法 5 1.5 論文架構 6 第二章 量測系統相關原理 8 2.1 表面特徵 8 2.2 鏡面反射原理 11 2.3 反射光能量法[27] 12 2.4 三角量測校驗法[29] 17 2.5 開普勒擴束定律[30] 20 2.6 數位影像處理[31] 21 2.6.1 影像平滑濾波 21 2.6.2 自動二值化 24 2.6.3 影像形態學[33] 26 2.6.4 細線化[34] 27 第三章 量測系統硬體設計 30 3.1 光路設計 30 3.2 光學元件 32 3.2.1 雷射源 32 3.2.2 反射鏡 32 3.2.3 透鏡 33 3.2.4 遮罩 34 3.3 取像系統 35 3.3.1 CCD工業相機 35 3.3.2 鏡頭 36 3.4 機構設計 37 3.5 軟體控制模組 41 3.6 雷射光源亮度調整系統 44 3.6 量測比對設備 46 第四章 量測演算法 48 4.1 粗糙度量測 48 4.1.1 數位影像處理 50 4.1.2 校驗流程規劃 51 4.2 輪廓量測 54 4.2.1 光條紋中心線位置 55 4.2.2 輪廓預估方法 55 第五章 實驗結果與數據分析 59 5.1 實際粗糙度量測結果 59 5.1.1 門檻值決定 61 5.1.2 粗糙度趨勢預估 66 5.1.3 裝置於機械手臂上即時量測結果 69 5.1.4 不同條紋數量測粗糙度之差異性 70 5.2 曲面輪廓量測結果 71 5.2.1 反射光點校驗 73 5.2.2 實際曲面量測 84 第六章 結論與未來展望 87 6.1 結論 87 6.2 未來展望 88 參考文獻 90 附件一 94 附件二 95 附件三 97 附件四 99 附件五 101 附件六 118 附件七 119 附件八 120

    [1] C. W. Tang, X. C. Liang, C. P. Zou, “Analysis on Modern Measuring Methods of Curved Surfaces,” SPIE, Vol. 2101, pp.122-124, 1993.
    [2] W. C. Tai, M. Chang, “Noncontact Profilometric Measurement of Large-Form Parts,” Optical Engineering, Vol. 35, No. 9, pp.2730-2735, 1996.
    [3] Y. Bickel, G. Hausler, M. Mual, “Triangulation with Expanded Range of Depth,” Opt. Eng., Vol. 24, pp.975-977, 1985.
    [4] P. Beckmann, A. Spizzichino, “The Scattering of Eletromagnetic Waves from Rough Surfaces,” Pergamon Press Ltd., Chap.1-5,1987.
    [5] D. J. Whitehouse, “Comparison between Stylus and Optical Methods for Measuring Surfaces.” Annals of the C.I.R.P., Vol. 37, pp. 649-653, 1988.
    [6] 修芳仲,「SMC試片表面特性量測法研究」,國立台灣大學機械工程研究所碩士論文,1990。
    [7] K. C. Fan, F. J. Shiou, “An optical flatness measurement system for medium-sized surface plates,” Precision Engineering, Vol. 21, pp. 112-197, 1997.
    [8] M. B. Kiran, B. Ramamoorthy, V. Radhakrishnan, “Evaluation of Surface Roughness by Vision System,” International Journal of Machine Tools Manufacturing, Vol.38, pp.685-690, 1988.
    [9] 楊景焜,「鋼材精製面之非接觸式表面粗糙度量測系統研究」,國立台灣科技大學機械研究所碩士論文,2001。
    [10] V.V. Alexander, H. Deng, M.N. Islam, F.L. Terry Jr, “Non-Contact Surface Roughness Measurement of Crankshaft Journals Using a Super-Continuum Laser,” IEEE, 2010.
    [11] E. Kayahan, H. Oktemb, F. Hacizade, H. Nasibov, O. Gundogdu, “Measurement of surface roughness of metals using binary speckle image analysis,” Tribology International, Vol. 43, pp. 307-311, 2010.
    [12] T. Jeyapoovan, M. Murugan, B. C. Bovas, “Statistical Analysis of Surface Roughness Measurements Using Laser Speckle Images,” IEEE, 2012.
    [13] J. Liu, E.H. Lu, H.A. Yi, P. Ao, “Grinding surface roughness measurement based on image quality assessment,” Journal of Electronic Measurement and Instrumentation, Vol.30, No.3, 2016.
    [14] A.S. Guru Prasad, V. Murukeshan, Matham, H. K. Kelvin Chan,” Fiber Optic Probe for Surface Roughness Measurement of ALM Samples Based on Laser Speckle Intensity,” IEEE International Conference On Recent Trends In Electronics Information Communication Technology, May 20-21, 2016.
    [15] I. Robles-Urquijo, M. Lomer, L. Rodriguez-Coboand, J. M. Lopez-Higuera, “Non-contact vibration analysis using speckle-based techniques,” 25th International Conference on Optical Fiber Sensors, Proc. of SPIE Vol. 10323,103237W, 2017.
    [16] A. Haridas, A. Crivoi, P. Prabhathan, K. Chan, V. M. Murukeshan, “Fractal speckle image analysis for surface characterization of aerospace structures,” Proceedings of SPIE, The International Society for Optical Engineering, Vol. 10449, 2017.
    [17] Dong Xu, Quan Yang, Feng Dong, Sridhar Krishnaswamy, “Evaluation of surface roughness of a machined metal surface based on laser speckle pattern”, The Institution of Engineering and Technology, Vol. 2018 Iss. 9, pp. 773-778, 2018.
    [18] 徐國展,「使用適應性光學模組之金屬表面粗糙度量測系統」,機械工程學系光機電工程碩士班碩士論文,國立中央大學,2011年。
    [19] 陳信儒,「以可程式化單一條紋反射法或結構光條紋投射法開發物體表面輪廓量測系統」,機械工程研究所碩士論文,台灣科技大學,2008年。
    [20] 詹啟孟,「可攜帶式船用複合材料表面特徵光學量測系統之研製」,機械工程研究所碩士論文,台灣科技大學,2009年。
    [21] 賴耀梓,「輕量化可攜式複合材料螺紋印量測器之研製」,機械工程研究所碩士論文,台灣科技大學,2010年。
    [22] 羅楚雲,「可攜式表面粗糙度及輪廓之光學量測系統開發」,機械工程研究所碩士論文,台灣科技大學,2012年。
    [23] T.R. Thomas, Rough Surfaces, Imperial College Press, London, pp.3-5, 1999.
    [24] ASME B46.1. Surface texture (surface roughness, waviness, and lay), 1995.
    [25] 同參考資料21 ,第110頁。
    [26] 陳亮嘉,「數位影像處理基礎」,國立臺灣大學,機械工程系,課程講義,2014。
    [27] 同參考資料4。
    [28] 同參考資料21,第11頁。
    [29] 同參考資料7。
    [30] 林凡異,「光電實驗講義」,國立清華大學,電機工程學系/光電 工程研究所,2000。
    [31] 鍾國亮,「影像處理與電腦視覺」,東華書局股份有限公司,2015。
    [32] N. Otsu, “A threshold selection method from gray level histogram,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-9, pp. 62-66, 1979.
    [33] 同參考資料31,第32-39頁。
    [34] 同參考資料31,第268-272頁。
    [35] Z-Laser雷射,https://z-laser.com/en/product/laser-modules/zm-laser-family/zm18/
    [36] The Imaging Source, DMK33UX25工業相機,https://reurl.cc/NelZ9
    [37] MORITEX 產品,http://cn.moritex.com/model/1-1-2-4-3-03.html
    [38] Boxplot法示意圖,https://reurl.cc/l6ye9

    QR CODE