簡易檢索 / 詳目顯示

研究生: Gizachew Belay
Gizachew - Belay
論文名稱: Microcrystalline Si thin film solar cells prepared through VHF- PECVD
Microcrystalline Si thin film solar cells prepared through VHF- PECVD
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: Liang-Yih Chen
Liang-Yih Chen
Shyankay Jou
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 120
中文關鍵詞: Microcrystalline siliconThin filmPECVDSolar CellIntrinsicDoping
外文關鍵詞: Microcrystalline silicon, Thin film, PECVD, Solar Cell, Intrinsic, Doping
相關次數: 點閱:418下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In this work, hydrogenated microcrystalline silicon (μc-Si:H) films deposited through very high frequency plasma enhanced chemical vapor deposition (VHF- PECVD) were investigated. First of all deposition parameters such as total pressure, substrate temperature, silane concentration, distance between electrodes, total gas flow rate, and plasma power were varied to investigate their effects on the properties of the intrinsic μc-Si:H absorber layers. we found that at a high growth rate of 7.3 A/s, a μc-Si:H thin film with optimized properties of 64 % crystalline ratio and 1.72 x10-6S/cm dark conductivity was obtained under a power density of 177 mW/cm2, substrate temperature of 200 oC, silane concentration of 4 % and total pressure of 1.5Torr. Furthermore, effects of doping ratio and thickness on the properties of both p-type and n-type μc-Si:H doped layers were explored. The results showed that a20nm thick p-type μc-Si:H layer which possessed high dark conductivity of 1.7x 10-1 S/cm was achieved using a trimethylboron/silane doping ration of 0.2 %, and a substrate temperature of 180 oC. On the other hand, a 25 nm thick n-type μc-Si:H layer with3.7 S/cm dark conductivity was established under a tert-butylphosphine/silane ratio of 0.5 %. Finally, by combining the optimized conditions for each layer, we tried to make a μc-Si H thin film solar cell using the standard Asahi U glass. The result showed a short circuit current density of 10.45mA/cm2, open-circuit voltage of 0.4 V, fill factor of 44.6 %, and efficiency of 1.83 %.


In this work, hydrogenated microcrystalline silicon (μc-Si:H) films deposited through very high frequency plasma enhanced chemical vapor deposition (VHF- PECVD) were investigated. First of all deposition parameters such as total pressure, substrate temperature, silane concentration, distance between electrodes, total gas flow rate, and plasma power were varied to investigate their effects on the properties of the intrinsic μc-Si:H absorber layers. we found that at a high growth rate of 7.3 A/s, a μc-Si:H thin film with optimized properties of 64 % crystalline ratio and 1.72 x10-6S/cm dark conductivity was obtained under a power density of 177 mW/cm2, substrate temperature of 200 oC, silane concentration of 4 % and total pressure of 1.5Torr. Furthermore, effects of doping ratio and thickness on the properties of both p-type and n-type μc-Si:H doped layers were explored. The results showed that a20nm thick p-type μc-Si:H layer which possessed high dark conductivity of 1.7x 10-1 S/cm was achieved using a trimethylboron/silane doping ration of 0.2 %, and a substrate temperature of 180 oC. On the other hand, a 25 nm thick n-type μc-Si:H layer with3.7 S/cm dark conductivity was established under a tert-butylphosphine/silane ratio of 0.5 %. Finally, by combining the optimized conditions for each layer, we tried to make a μc-Si H thin film solar cell using the standard Asahi U glass. The result showed a short circuit current density of 10.45mA/cm2, open-circuit voltage of 0.4 V, fill factor of 44.6 %, and efficiency of 1.83 %.

TABLE OF CONTENTS ABSTRACTI ACKNOWLEGEMENTII TABLE OF CONTENTSIII LIST OF FIGURESVI LIST OF TABLESX Chapter 1 Introduction1 1.1 Solar cell1 1.2 Thin film silicon solar cells5 1.3 Microcrystalline silicon thin film solar cell9 1.4 Objective and Outline of the thesis12 Chapter 2 Experimental and characterization techniques14 2.1 Material and Solar Cell Preparation14 2.1.1 Plasma Enhanced Chemical Vapor Deposition System14 2.1.2 Fabrication of microcrystalline silicon thin films18 2.2 Material characterizations23 2.2.1 Thickness measurement23 2.2.1.1 Ellipsometer23 2.2.2 Structural property characterization25 2.2.2.1 Raman spectroscopy25 2.2.3 Optical Properties27 2.2.3.1 UV-VIS spectroscopy28 2.2.4 Electrical properties28 2.2.4.1 Dark and photoconductivity measurement29 2.3 Solar cell characterization30 2.3.1 Current-Voltage Characteristics30 Chapter 3 Influence of Deposition Parameters on μc-Si:H i-Layer33 3.1 Influence of deposition pressure33 3.2 Role of substrate temperature38 3.3 Distance between the electrodes43 3.4 Silane concentration48 3.5 Effect of total gas flow rate and plasma power on the growth of intrinsic μc-Si:H layers53 3.5.1 Total gas flow rate53 3.5.2 Plasma power57 3.6 Conclusions61 Chapter 4 Deposition of doped μc-Si:H layers62 4.1 Microcrystalline p-layers62 4.1.1 Influence of doping ratios onμc-Si:H p-layer63 4.1.2 Thicknesses68 4.1.3 Substrate Temperature72 4.1.4 The effect of hydrogen plasma treatment to the film growth of microcrystalline p-layer76 4.2 Microcrystalline n-layer85 4.2.1 Effects of phosphorous doping85 4.2.2 Thickness dependence90 4.3 Conclusions93 Chapter 5 Microcrystalline thin film solar cells94 Summary100 References102

1.Oyediran David Oludare, Growth of Thin Film Microcrystalline Silicon Solar Cells, Delft University of Technology, 2009.
2.Liwei Li, Fabrication and Characterization of Microcrystalline Solar Cells, January 2004.
3.H.F. Sterling and R.C.G. Swann, Thin-Film Silicon Solar Cells Solid-State Electron, (1965) p. 653-654.
4.W. Spear and P. Le Comber, Solid State Comm. 17 (1975) p. 1193-1196.
5.Paul A. Lynn, An Introduction to Photovoltaics, Imperial College London, c 2010, John Wiley & Sons, Ltd.
6.Jenny Nelson, The Physics of Solar Cells, London, April 2002.
7. Limin Qi, ZhijuanHua, WangLi, XiaomeiQin, GuopingDua, Weizhi Han , WangzhouShi, Influence of substrate on the growth of microcrystalline silicon thin films deposited by PECVD, Materials Science in Semiconductor Processing (2012).
8.M. N. van den Donker, Plasma Deposition of Microcrystalline Silicon Solar Cells: Looking beyond the Glass, December 2006.
9.Elvira Fortunato, David Ginley, Hideo Hosono, and David C. Paine, Transparent Conducting Oxides for Photovoltaics, MRS BULLETIN • Volume 32 • March 2007.
10.Thilo Grau , Grau , Molin Huo, Karsten Neuhoff, Survey of photovoltaic industry and policy in Germany and China, Energy Policy 51 (2012) 20–37.
11.O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth,A. Lambertz, A. MuK ck, B. Rech, H. Wagner, Intrinsic microcrystalline silicon: A new material for photovoltaics, Solar Energy Materials & Solar Cells 62 (2000) 97}108.
12.Coby S.Tao, JiechaoJiang , MengTao, Natural resource limitations to terawatt-scale solar cells. Solar Energy Materials & Solar Cells 95 (2011) 3176–3180.
13.Microcrystalline Silicon Solar Cells Prepared by 13.56 MHz PECVD, Berichte des Forschungszentrums Julich 4083.
14.Martin A. Green, Keith Emery, David L. King, Yoshihiro Hisikawa, and Wilhelm Warta, Progress in Photovoltaics, Res. Appl. 2006; 14:45–51.
15.Lin Aiguo, Ding Jianning, Yuan Ningyi, Wang Shubo, Cheng Guanggui, and Lu Chao, Analysis of the pC/p window layer of thin film solar cells by simulation, J.Semicond. 2012.
16.Vaishali S. Waman, Mahesh M. Kamble,a Sanjay S. Ghosh,a Azam Mayabadi, Vasant. G. Sathe, Habib M. Pathan,c Shashikant D. Shinde,c Kiran P. Adhic and Sandesh R. Jadkar, Highly conducting phosphorous doped n-type nc-Si:H films by HW-CVD for c-Si heterojunction solar cells, RSC Adv., 2012, 2, 9873–9880.
17.H. Zhu, Y. Huang, Y. Mai, Y. Wang, J. Yin, Y. Feng, T. He, J. Gao, Z. Wang1, L. Lan, J. Ni, F. Guan,Y. Bai, Y.Ma, and M. Wan, Study of silicon thin film solar cells with different back-reflectors, Phys. Status Solidi A, 1–6 (2013).
18.Tsvetelina Merdzhanova, Microcrystalline Silicon Films and Solar Cells Investigated by Photoluminescence Spectroscopy, Volume 41, ISBN 3-89336-4013.
19.Guy Beaucarne, Review Article Silicon Thin-Film Solar Cells, Volume 2007, Article ID 36970, 12.
20.A.V. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Material and solar cell research in microcrystalline silicon, Solar Energy Materials & Solar Cells 78 (2003) 469–491.
21.J. Poortmans and V. Arkhipov, Thin film solar cells fabrication, characterization and applications, John Wiley & Sons, Ltd. ISBN: 0-470-09126-6, 2006.
22.Ke Tao, Dexian Zhang , Jingfang Zhao, Linshen Wang, Hongkun Cai, Yun Sun, Low temperature deposition of boron-doped microcrystalline Si:H thin film and its application in silicon based thin film solar cells, Journal of Non-Crystalline Solids 356 (2010)
23.B. Rech, T. Roschek, T. Repmann, J. Mu‥ller, R. Schmitz, W. Appenzeller, Microcrystalline silicon for large area thin film solar cells, Thin Solid Films 427 (2003).
24.A. Shah, M. Vanecek, J. Meier, F. Meillaud, J. Guillet, D. Fischer, C. Droz, X. Niquille, S. Fa‥y, E. Vallat-Sauvain, V. Terrazzoni-Daudrix and J. Bailat, Basic efficiency limits, recent experimental results and novel light trapping schemes in a-Si:H, μc-Si:H and micromorph tandem solar cells, Journal of Non-Crystalline Solids, 338–340, 639–645 (2004).
25.P. Roca ,Cabarrocas, K.H. Kim, R. Cariou, M. Labrune, E.V. Johnson, M. Moreno, A.Torres Rios, S. Abolmasov, and S. Kasouit, Low Temperature Plasma Synthesis of Nanocrystals and their Application to the Growth of Crystalline Silicon and Germanium Thin Films, Mater. Res. Soc. Symp. Proc. Vol. 1426 c 2012.
26.J.K. Rath, Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications, 2002 Elsevier Science.
27.Wilfried G. J. H. M. van Sark, Lars Korte, Francesco Roca, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells, Volume 02011.
28.Zhimeng Wu, Jian Sun, Qingsong Lei, Ying Zhao, Xinhua Geng, Jianping Xi, Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy, Physica E 33 (2006) 125–129.
29.Y. Mai, S. Klein, X. Geng, and F. Finger, Structure adjustment during high deposition-rate growth of microcrystalline silicon solar cells, Appl. Phys. Lett. 85, 2839 (2004).
30.S. Ray, S. Mukhopadhyay, T. Jana, R. Carius, Transition from amorphous to microcrystalline Si:H: effects of substrate temperature and hydrogen dilution, Journal of Non-Crystalline Solids 299–302 (2002) 761–766.
31.A. Matsuda: Amorphous and Microcrystalline Silicon, In Springer Handbook of Electronic and Photonic Materials, S Kasap and P Capper (Eds.), Springer Science + Business Media, Inc. pp. 581 (2006 ).
32.H. G. Tompkins and E. A. Irene, HANDBOOK OF ELLIPSOMETRY, November 2004.
33.M.C. Schillo, Measurement of Membrane Thickness by Ellipsometry, November 2007.
34.C. Droz, E. Vallat-Sauvain, J. Bailat, L. Feitknecht,J. Meier, A. Sha, Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells, Solar Energy Materials and Solar Cells issue 1, 61-71, 2004.
35.Joseph M. Marshall, Doriana Dimova-Malinovska, Photovoltaic and Photoactive Materials - Properties, Technology and Applications, 2002.
36.N. P. Kherani, T. Allen, F. Gaspari, T. Kosteski, K. Leong, I. Milostnaya, D.Yeghikyan, S. Zukotynski, microcrystalline silicon thin films using DC Saddle-field Glow Discharge, 3rd World Conference on Photovoltaic Energy Conversion, May 2003.
37.Qingsong Lei, Zhimeng Wu, Xinhua Geng, Ying Zhao and Jianping Xi, Investigation of the Si:H films deposition near the transition region for application in solar cells, Mod. Phys. Lett. B 2006.
38.Tarjudin, N.A, Sumpono, , Sakrani, S. Institut Ibnu Sina, Jabatan Fizik, Fakulti Sains, Optical Properties of Nanocrystalline Silicon Thin Films in Wider Regions of Wavelength, Journal of Science and Technology.
39.Yaohua Mai, Microcrystalline silicon layer for thin film solar cells prepared with hot ware chemical vapour deposition and plasma enhanced chemical vapour deposition, Nankai Univ.,Diss.,2006.
40.Yongsheng Chen, Jianhua Wang, Jingxiao Lu, Wen Zheng, Jinhua Gu, Shi-e Yang, Xiaoyong Gao, Microcrystalline silicon grown by VHF PECVD and the fabrication of solar cells, November 2008.
41.Takuya Matsui_, Akihisa Matsuda, Michio Kondo, High-rate microcrystalline silicon deposition for p–i–n junction solar cells, Solar Energy Materials & Solar Cells 90 (2006).
42.Makoto Fukawa, Susumu Suzuki, Lihui Guo, Michio Kondo, Akihisa Matsuda, High rate growth of microcrystalline silicon using a high-pressure depletion method with VHF plasma, Solar Energy Materials & Solar Cells 66 (2001).
43.K M Azizur Rahman, Nanocrystalline Silicon Solar Cells Deposited via Pulsed PECVD at 150°C Substrate Temperature, Ontario, Canada, 2010.
44.Akihisa Matsuda, Microcrystalline silicon Growth and device application, Journal of Non-Crystalline Solids 338–340 (2004).
45.Amartya Chowdhury, Sumita Mukhopadhyay, Swati Ray, Effect of electrode separation on PECVD deposited nanocrystalline silicon thin film and solar cell properties, Solar Energy Materials & Solar Cells 94 (2010).
46.Xiaoyan Han, Guofu Hou, Guijun Li, Xiaodan Zhang, Jianjun Zhang, Xinliang Chen, Dekun Zhang, ChangchunWei, Jian Sun, Ying Zhao, Xinhua Geng, Effects of total gas flow rates on the high rate growth microcrystalline silicon thin films, IEEE 2008.
47.Ke Tao, Dexian Zhang, Yun Su, Linshen Wang, Jingfang Zhao, Ying Xue, Yuanjian Jiang, Hongkun ail, Yanping SUi and Jin Wang, Boron doped hydrogenated nanocrystalline silicon thin films prepared by layer-by-layer technique and its application in n-i-p flexible amorphous silicon thin film solar cells, IEEE 2008.
48.Urs Samuel Graf, Single-chamber process development of microcrystalline Silicon solar cells and high-rate deposited intrinsic layers, 2005.
49.Sergej Alexandrovich Filonovich, Hugo A’ guas, Tito Busani, Ant’onio Vicente, Andreia Ara’ujo, Diana Gaspar, Marcia Vilarigues, Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3, Sci. Technol. Adv. Mater. 13 (2012).
50.Y. Poissant, P. Chatterjee,andP. Roca i Cabarrocas, benefit from microcrystalline silicon N layers in single junction amorphous silicon p-i -n solar cells, J. Appl. Phys., Vol. 93, No. 1, 1 January 2003.
51.Y. Sobajima, S. Kamanaru , H. Muto a, J. Chantana, C. Sada, A. Matsuda, H. Okamoto, Effect of thermal annealing and hydrogen-plasma treatment in boron-doped microcrystalline silicon, Journal of Non-Crystalline Solids 358 (2012).
52.Y. Mai, S. Klein, R. Carius, J. Wolff, A. Lambertz, and F. Finger, Microcrystalline silicon solar cells deposited at high rates, J. Appl. Phys. 97, 114913 (2005).

QR CODE