簡易檢索 / 詳目顯示

研究生: 高璿智
Hsuan-chih Kao
論文名稱: 應用TOPSIS方法於多目標整體生產規劃
Applying TOPSIS Method to Multi-objective Aggregate Production Planning
指導教授: 喻奉天
Vincent F. Yu
口試委員: 丁秀儀
Hsiu-I Ting
林詩偉
Shih-Wei Lin
喻奉天
Vincent F. Yu
楊朝龍
Chao-Lung Yang
蔡豐明
Feng-Ming Tsai
盧宗成
Chung-Cheng Lu
簡紹琦
Shao-Chi Chien
學位類別: 博士
Doctor
系所名稱: 管理學院 - 管理研究所
Graduate Institute of Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 59
中文關鍵詞: 整體生產規劃多目標決策理想解相似度順序偏好法妥協規劃
外文關鍵詞: aggregate production planning, multi-objective decision making, TOPSIS, compromise programming
相關次數: 點閱:314下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 企業為了要達成訂定的績效目標,將生產製造的流程進行精實管理,從整體的規劃生產、勞動力與庫存基準等各項變數,鎖定並解決各式變動問題,以滿足營運計劃所訂定的績效目標,這樣的管理技術稱為整體生產規劃 (Aggregate Production Planning; APP) 。APP的執行過程之中,規劃者需要同時考慮多個目標,並經由調整產能、人力資源方面的招聘與裁員、是否需要加班、庫存基準的變動調整、延期交貨,以及其他的可控變數,加以整合為滿足需求預測的多目標決策問題 (Multi-objective Decision Making; MODM)。目前常應用於APP有好幾種方法,為了追求更接近績效目標,本研究提出運用理想解相似度順序偏好法 (Technique for Order Preference by Similarity to Ideal Solution; TOPSIS) ,將經由控制距離的測量,把多目標轉換為雙目標,一個是距離最短的正理想解決方案 (Positive Ideal Solution; PIS),另一個是距離最長的負理想解決方案 (Negative Ideal Solution; NIS),接續應用max-min法則運算來平衡滿意度,化解PIS與NIS雙目標之間的衝突,以折衷方式 (Compromise Programming; CP) 的妥協規劃,獲取最接近績效目標的理想解決方案 (Ideal Solution),並運用一個實例,加入其它三種規劃方法與本本研究提出的方法,本研究模型獲得最佳利潤,相較其它三種解法為最接近最優解的有效方法,於實際應用決策問題的優化效果,做為解決APP規劃問題的一個創新方法。


    To achieve performance goals, companies often streamline their production processes based on variable labor, inventory, and other factors that meet the requirements of their business plans. This management technique is called Aggregate Production Planning (APP) and involves multi-objective decision making to optimize production. Planners must consider multiple objectives simultaneously and can do so by adjusting production capacity, staffing levels, overtime, and inventory levels to meet demand forecasts. There are several APP methods, but this study proposes an optimization method that converts multiple objectives into two by using the Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) to measure control distances. One is the Positive Ideal Solution (PIS), which has the shortest distance, and the other is the Negative Ideal Solution (NIS), which has the longest distance. To balance the satisfaction and resolve conflicts between these two, the Max-Min rule is applied and the ideal solution that is closest to the performance goal is determined using Compromise Programming (CP). We prove the effectiveness of this optimization model using an example, we can construct the research model by incorporating the other three planning methods along with the proposed method in this study. This research model obtains the best profit. Compared to the other three methods, this approach proves to be the most effective in reaching an optimal solution. By utilizing the optimization effect of real-world decision-making problems, we offer an innovative approach to solve the APP planning problem.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 1.1 研究背景與動機 2 1.2 研究目的 3 1.3 論文架構與研究流程 4 第二章 文獻回顧 6 2.1 APP的背景 6 2.2 APP的規劃方法 10 2.2.1 線性規劃 11 2.2.2 非線性規劃 13 2.2.3 模糊規劃 14 2.2.4 多元問題的規劃 15 2.2.5 其它定量方法 17 2.3 TOPSIS方法 19 第三章 研究方法 23 3.1 問題表述與生產條件 23 3.2 參數設定 23 3.3 理想點的距離dp 28 3.4 運用TOPSIS解決MOP問題 29 第四章 實驗結果與分析討論 32 4.1 個案背景說明 32 4.2 導入模型求解 34 4.3 效能分析 36 第五章 結論與未來研究方向 39 5.1 研究結論 39 5.2 未來研究方向 40 參考文獻 41 中文文獻 41 英文文獻 42

    中文文獻
    1.王瑞琛(2000),模糊環境下整體生產規劃之研究,行政院國家科學委員會專題研究計畫成果報告。(NSC-89-2213-E011-051)
    2.梁添富(2004),模糊數學規劃於整體生產規劃決策之應用,國立臺灣科技大學工業管理系博士班,博士論文。
    https://hdl.handle.net/11296/exqy6s
    3.林育萱(2008),考量模糊目標優先順序之整體生產規劃模式,國立成功大學工業與資訊管理系碩士班,碩士論文。
    https://hdl.handle.net/11296/s6p6hk
    4.張保隆(2011),生產管理(四版),華泰文化。 (ISBN:9789576098314)

    英文文獻
    1.Abo-Sinna, M. A., & Amer, A. H. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 162(1), 243-256.
    2.Abu Bakar, M. R., Bakheet, A. J. K., Kamil, F., Kalaf, B. A., Abbas, I. T., & Soon, L. L. (2016). Enhanced simulated annealing for solving aggregate production planning. Mathematical Problems in Engineering, 2016, 1679315, 9.
    3.Alazemi, F. K. A., Ariffin, M. K. A. B. M., Mustapha, F. B., & Supeni, E. E. B. (2022). A new fuzzy TOPSIS-based machine learning framework for minimizing completion time in supply chains. International Journal of Fuzzy Systems, 24(3), 1669-1695.
    4.Aliev, R. A., Fazlollahi, B., Guirimov, B., & Aliev, R. R. (2007). Fuzzy-genetic approach to aggregate production–distribution planning in supply chain management. Information Sciences, 177(20), 4241-4255.
    5.Attia, E.-A., Megahed, A., AlArjani, A., Elbetar, A., & Duquenne, P. (2022). Aggregate production planning considering organizational learning with case based analysis. Ain Shams Engineering Journal, 13(2), 101575.
    6.Aydin, N. S., & Tirkolaee, E. B. (2022). A systematic review of aggregate production planning literature with an outlook for sustainability and circularity. Environment, Development and Sustainability, (2022) 1-42. https://doi.org/10.1007/s10668-022-02304-8248725166
    7.Baykasoglu, A. (2001). MOAPPS 1.0: aggregate production planning using the multiple-objective tabu search. International Journal of Production Research, 39(16), 3685-3702.
    8.Baykasoglu, A., & Gocken, T. (2010). Multi-objective aggregate production planning with fuzzy parameters. Advances in Engineering Software, 41(9), 1124-1131.
    9.Bellman, R. E., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Science, 17(4), B-141-B-164.
    10.Bley, A., Boland, N., Froyland, G., & Zuckerberg, M. (2012). Solving mixed integer nonlinear programming problems for mine production planning with stockpiling. Optimization Online (http://www.optimization-online.org/DB_HTML/2012/11/3674.html).
    11.Chakrabortty, R., & Hasin, M. (2013). Solving an aggregate production planning problem by using multi-objective genetic algorithm (MOGA) approach. International Journal of Industrial Engineering Computations, 4(1), 1-12.
    12.Chatterjee, S., & Lim, S. (2022). A TOPSIS-inspired ranking method using constrained crowd opinions for urban planning. Entropy, 24(3), 371.
    13.Chen, C.-L., & Lee, W.-C. (2004). Multi-objective optimization of multi-echelon supply chain networks with uncertain product demands and prices. Computers & Chemical Engineering, 28(6-7), 1131-1144.
    14.Chen, S.-P., & Huang, W.-L. (2010). A membership function approach for aggregate production planning problems in fuzzy environments. International Journal of Production Research, 48(23), 7003-7023.
    15.da Silva, C. G., Figueira, J., Lisboa, J., & Barman, S. (2006). An interactive decision support system for an aggregate production planning model based on multiple criteria mixed integer linear programming. Omega, 34(2), 167-177.
    16.Dhaenens-Flipo, C., & Finke, G. (2001). An integrated model for an industrial production–distribution problem. Iie Transactions, 33(9), 705-715.
    17.Fung, R. Y., Tang, J., & Wang, D. (2003). Multiproduct aggregate production planning with fuzzy demands and fuzzy capacities. IEEE Transactions on systems, man, and cybernetics-Part A: Systems and humans, 33(3), 302-313.
    18.Gholamian, N., Mahdavi, I., & Tavakkoli-Moghaddam, R. (2016). Multi-objective multi-product multi-site aggregate production planning in a supply chain under uncertainty: fuzzy multi-objective optimisation. International Journal of Computer Integrated Manufacturing, 29(2), 149-165.
    19.Gholamian, N., Mahdavi, I., Tavakkoli-Moghaddam, R., & Mahdavi-Amiri, N. (2015). Comprehensive fuzzy multi-objective multi-product multi-site aggregate production planning decisions in a supply chain under uncertainty. Applied Soft Computing, 37, 585-607.
    20.Guzman, E., Andres, B., & Poler, R. (2022). A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve Replenishment, Production and Distribution Planning Problems. Mathematics, 10(9), 1544.
    21.Ho, J. K., & Loute, E. (1983). Computational experience with advanced implementation of decomposition algorithms for linear programming. Mathematical Programming, 27, 283-290.
    22.Holt, C. C., Modigliani, F., & Simon, H. A. (1955). A linear decision rule for production and employment scheduling. Management Science, 2(1), 1-30.
    23.Husain, Z., Maqbool, A., Haleem, A., Pathak, R. D., & Samson, D. (2021). Analyzing the business models for circular economy implementation: a fuzzy TOPSIS approach. Operations Management Research, 14(3-4), 256-271.
    24.Hwang, C.-L., Yoon, K., Hwang, C.-L., & Yoon, K. (1981). Methods for multiple attribute decision making. Multiple attribute decision making: methods and applications a state-of-the-art survey, 58-191.
    25.Jain, A., & Palekar, U. S. (2005). Aggregate production planning for a continuous reconfigurable manufacturing process. Computers & operations research, 32(5), 1213-1236.
    26.Jamalnia, A., & Soukhakian, M. A. (2009). A hybrid fuzzy goal programming approach with different goal priorities to aggregate production planning. Computers & Industrial Engineering, 56(4), 1474-1486.
    27.Jamalnia, A., Yang, J.-B., Xu, D.-L., Feili, A., & Jamali, G. (2019). Evaluating the performance of aggregate production planning strategies under uncertainty in soft drink industry. Journal of Manufacturing Systems, 50, 146-162.
    28.Jang, J., & Do Chung, B. (2020). Aggregate production planning considering implementation error: A robust optimization approach using bi-level particle swarm optimization. Computers & Industrial Engineering, 142, 106367.
    29.Jasiulewicz-Kaczmarek, M., Antosz, K., Wyczółkowski, R., Mazurkiewicz, D., Sun, B., Qian, C., & Ren, Y. (2021). Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for evaluation of the maintenance factors affecting sustainable manufacturing. Energies, 14(5), 1436.
    30.Kanyalkar, A., & Adil, G. (2007). Aggregate and detailed production planning integrating procurement and distribution plans in a multi-site environment. International Journal of Production Research, 45(22), 5329-5353.
    31.Khemiri, R., Elbedoui-Maktouf, K., Grabot, B., & Zouari, B. (2017). Integrating fuzzy TOPSIS and goal programming for multiple objective integrated procurement-production planning. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), https://doi.org/ 10.1109/ETFA.2017.8247644
    32.Kumar, S., & Barman, A. G. (2021). Fuzzy TOPSIS and fuzzy VIKOR in selecting green suppliers for sponge iron and steel manufacturing. Soft Computing, 25, 6505-6525.
    33.Lababidi, H. M., Ahmed, M. A., Alatiqi, I. M., & Al-Enzi, A. F. (2004). Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Industrial & Engineering Chemistry Research, 43(1), 63-73.
    34.Lai, Y.-J., Liu, T.-Y., & Hwang, C.-L. (1994). Topsis for MODM. European Journal of Operational Research, 76(3), 486-500.
    35.Leung, S. C., Tsang, S. O., Ng, W.-L., & Wu, Y. (2007). A robust optimization model for multi-site production planning problem in an uncertain environment. European Journal of Operational Research, 181(1), 224-238.
    36.Leung, S. C., Wu, Y., & Lai, K. (2003). Multi-site aggregate production planning with multiple objectives: a goal programming approach. Production Planning & Control, 14(5), 425-436.
    37.Leung, S. C., & Wu, Y. (2004). A robust optimization model for stochastic aggregate production planning. Production Planning & Control, 15(5), 502-514.
    38.Makui, A., Heydari, M., Aazami, A., & Dehghani, E. (2016). Accelerating Benders decomposition approach for robust aggregate production planning of products with a very limited expiration date. Computers & Industrial Engineering, 100, 34-51.
    39.Mehdizadeh, E., Niaki, S. T. A., & Hemati, M. (2018). A bi-objective aggregate production planning problem with learning effect and machine deterioration: Modeling and solution. Computers & operations research, 91, 21-36.
    40.Mirzapour Al-E-Hashem, S., Malekly, H., & Aryanezhad, M. B. (2011). A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. International Journal of Production Economics, 134(1), 28-42.
    41.Modarres, M., & Izadpanahi, E. (2016). Aggregate production planning by focusing on energy saving: A robust optimization approach. Journal of cleaner production, 133, 1074-1085.
    42.Mohammadi, H., & Aryanezhad, M. (2001). A new Approach Versus Benders Decomposition in Aggregate Production Planning. International Journal of Engineering, 14(4), 351-360.
    43.Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research, 204(3), 377-390.
    44.Mula, J., Poler, R., & Garcia, J. (2006). MRP with flexible constraints: A fuzzy mathematical programming approach. Fuzzy sets and systems, 157(1), 74-97.
    45.Nam, S.-J., & Logendran, R. (1992). Aggregate production planning—a survey of models and methodologies. European Journal of Operational Research, 61(3), 255-272.
    46.Ning, Y., Liu, J., & Yan, L. (2013). Uncertain aggregate production planning. Soft Computing, 17, 617-624.
    47.Olson, D. L. (2004). Comparison of weights in TOPSIS models. Mathematical and Computer Modelling, 40(7-8), 721-727.
    48.Omar, M. K., Jusoh, M. M., & Omar, M. (2012). Investigating the benefits of fuzzy mathematical programming approach for solving aggregate production planning. 2012 IEEE international conference on fuzzy systems, https://doi.org/10.1109/FUZZ-IEEE.2012.6251368
    49.Paksoy, T., Pehlivan, N., & Ozceylan, E. (2010). Application of Fuzzy mathematical programming approach to the aggregate production/distribution planning in a supply chain network problem. Scientific research and Essays, 5(22), 3384-3397.
    50.Park, Y. (2005). An integrated approach for production and distribution planning in supply chain management. International Journal of Production Research, 43(6), 1205-1224.
    51.Rajak, S., Vimal, K., Arumugam, S., Parthiban, J., Sivaraman, S. K., Kandasamy, J., & Duque, A. A. (2022). Multi-objective mixed-integer linear optimization model for sustainable closed-loop supply chain network: A case study on remanufacturing steering column. Environment, Development and Sustainability, 24(5), 6481-6507.
    52.Ramezanian, R., Rahmani, D., & Barzinpour, F. (2012). An aggregate production planning model for two phase production systems: Solving with genetic algorithm and tabu search. Expert Systems with Applications, 39(1), 1256-1263.
    53.Relvas, S., Magatão, S. N. B., Barbosa-Póvoa, A. P. F., & Neves Jr, F. (2013). Integrated scheduling and inventory management of an oil products distribution system. Omega, 41(6), 955-968.
    54.Rizk, N., Martel, A., & D'Amours, S. (2008). Synchronized production–distribution planning in a single-plant multi-destination network. Journal of the Operational Research Society, 59(1), 90-104.
    55.Shafipour-Omran, B., Khalili-Damghani, K., & Ghasemi, P. (2020). Solving a supply chain problem using two approaches of fuzzy goal programming based on TOPSIS and fuzzy preference relations. Journal of Industrial and Systems Engineering, 13(2), 27-48.
    56.Sirbiladze, G., Matsaberidze, B., Ghvaberidze, B., Midodashvili, B., & Mikadze, D. (2021). Fuzzy TOPSIS based selection index in the planning of emergency service facilities locations and goods transportation. Journal of Intelligent & Fuzzy Systems, 41(1), 1949-1962.
    57.Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research, 251(2), 345-355.
    58.Sun, H., Zhang, B., & Ni, W. (2022). A hybrid model based on SEM and fuzzy TOPSIS for supplier selection. Mathematics, 10(19), 3505.
    59.Tang, J., Fung, R. Y., & Yung, K.-L. (2003). Fuzzy modelling and simulation for aggregate production planning. International Journal of Systems Science, 34(12-13), 661-673.
    60.Váncza, J., Kis, T., & Kovács, A. (2004). Aggregation-the key to integrating production planning and scheduling. CIRP Annals, 53(1), 377-380.
    61.Wan, S.-P., Chen, Z.-H., & Dong, J.-Y. (2021). Bi-objective trapezoidal fuzzy mixed integer linear program-based distribution center location decision for large-scale emergencies. Applied Soft Computing, 110, 107757.
    62.Wang, R.-C., & Fang, H.-H. (2001). Aggregate production planning with multiple objectives in a fuzzy environment. European Journal of Operational Research, 133(3), 521-536.
    63.Yan, H.-S., Zhang, X.-D., & Jiang, M. (2004). Hierarchical production planning with demand constraints. Computers & Industrial Engineering, 46(3), 533-551.
    64.Yu, P.-L., & Zeleny, M. (1975). The set of all nondominated solutions in linear cases and a multicriteria simplex method. Journal of Mathematical Analysis and Applications, 49(2), 430-468.
    65.Zanjani, M. K., Ait-Kadi, D., & Nourelfath, M. (2010). Robust production planning in a manufacturing environment with random yield: A case in sawmill production planning. European Journal of Operational Research, 201(3), 882-891.
    66.Zare, H., Kamali Saraji, M., Tavana, M., Streimikiene, D., & Cavallaro, F. (2021). An Integrated Fuzzy Goal Programming—Theory of Constraints Model for Production Planning and Optimization. Sustainability, 13(22), 12728.
    67.Zeleny, M., & Cochrane, J. (1982). Multiple criteria decision making McGraw-Hill New York, 34.
    68.Zeng, S., Chen, S.-M., & Fan, K.-Y. (2020). Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and TOPSIS method. Information Sciences, 506, 424-442.
    69.Zimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45-55.

    QR CODE