簡易檢索 / 詳目顯示

研究生: 林姿妤
Tzu-Yu Lin
論文名稱: 利用三向度有限元素分析潛盾隧道二次灌漿之效益
A Study of Secondary Grouting Effect in Shield Tunneling
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 熊彬成
賴建名
鄧福宸
周宏仁
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 154
中文關鍵詞: 潛盾隧道二次灌漿三向度有限元素分析
外文關鍵詞: Shield Tunneling, Secondary Grouting, finite element analysis
相關次數: 點閱:241下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究之目的為利用三向度有限元素分析二次灌漿之效益。首先針對台北捷運土城延伸線CD266施工標之案例,以PLAXIS 3D進行數值分析模擬,並與監測斷面結果比較驗證,以確定三向度數值模擬分析時,土壤模式的適用性、土壤及結構參數的選取、潛盾機壓力的決定、二次灌漿模擬之正確性。本研究針對灌漿材料強度的改變、不同二次灌漿厚度及改變二次灌漿的灌注時間進行參數研究,探討二次灌漿在不同條件下之效益。最後利用PLAXIS 3D模擬在潛盾隧道施工前,將隧道上方土層施作全面地盤改良,視其抑制地表沉陷之效益。研究結果顯示,因為潛盾機主要沉陷來自於盾尾脫盾後之盾尾間隙,於其一天後施作二次灌漿,能抑制的地盤變位並不顯著。建物保護應於隧道鑽掘前即採取對策最為有效,事後之防護對沉陷之防止效果則較為有限。


It is common to use secondary grouting as a protection method in shield tunneling. In this study, a series of finite element analyses were conducted using PLAXIS 3D 2017 to investigate the secondary grouting effect in EPB shield tunneling cases through CD266 contract of Taipei Mass Rapid Transit System Tucheng Line. First, the soil model and parameters of soil and structural elements were calibrated with the field measurement data. Various parametric studies were executed to assess the impact of secondary grouting layer thickness, different strength of the composite material and the injection timing of the secondary grouting. It was found from this study that the secondary grouting had no effect to mitigate the settlement, even increased the thickness and strength of the grouting zone. This is because the major settlement occurred when segmental lining left the TBM shield. That was the reason why the secondary grouting after that time couldn't mitigate the settlement. To have a better effect in reducing the settlement, the protection methods should be conducted before the TBM excavated.

中文摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 X 符號索引 XV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究方法及內容 2 第二章 文獻回顧 3 2.1 潛盾隧道引致之地盤變位 3 2.1.1 經驗法 5 2.1.2 解析解法 7 2.2 二次灌漿 11 2.2.1 二次灌漿之定義 11 2.2.2 二次灌漿之討論 14 第三章 案例研究-土城線CD266施工標 16 3.1 前言 16 3.1.1 工址調查 16 3.1.2 潛盾機規格 20 3.1.3 施工順序及過程 22 3.2 下行隧道監測資料結果分析 22 3.2.1 無二次灌漿之斷面 22 3.2.2 有二次灌漿之斷面 26 第四章 二次灌漿於黏土層之分析 29 4.1 前言 29 4.2 斷面19之分析模擬 29 4.2.1 地層剖面 29 4.2.2 土壤參數之決定 33 4.2.3 結構參數之決定 38 4.2.4 土壤漏失率評估 39 4.2.5 潛盾機壓力之決定 41 4.2.6 二次灌漿模擬及參數決定 43 4.2.7 模型邊界及網格建立 47 4.2.8 監測斷面選取及施工模擬程序 49 4.3 斷面19之分析結果 54 4.3.1 模型參數校正 54 4.4 斷面19之參數研究 59 4.4.1 提升灌漿材強度之模擬 59 4.4.2 增加二次灌漿厚度之模擬 65 4.4.3 改變二次灌漿灌注時間 68 4.5 潛盾隧道於厚黏土層之參數研究 72 4.5.1 土壤參數決定 72 4.5.2 施工程序模擬 74 4.5.3 分析結果 75 4.6 討論 85 第五章 二次灌漿於砂土層之分析 91 5.1 前言 91 5.2 斷面4之分析模擬 91 5.2.1 地層剖面 91 5.2.2 土壤參數之決定 94 5.2.3 結構參數之決定 95 5.2.4 土壤漏失率評估 95 5.2.5 潛盾機壓力之決定 97 5.2.6 二次灌漿模擬及參數之決定 97 5.2.7 模型邊界及網格建立 103 5.2.8 監測斷面選取及施工模擬程序 103 5.2.9 模型參數校正 109 5.3 斷面4之參數研究 112 5.3.1 複合材料之排水類型模擬分析 112 5.3.2 提升改良率之模擬分析 115 5.3.3 改變二次灌漿灌注時間 119 5.4 討論 123 第六章 結論與建議 129 6.1 結論 129 6.2 建議 130  

中華民國隧道協會研究發展委員會(2004)。軟土潛盾隧道工程設計與實例手冊。台北市: 科技圖書。
中華民國隧道協會研究發展委員會(2009)。潛盾隧道設計及施工準則與解說。台北市: 科技圖書。
台北捷運施工和鄰房保護地盤改良案例(2000)。黃南輝、金全鑫。檢自 http://www.maa.com.tw/common/publications/2000/2000-012.pdf(May.15,2018)。
吳宗憲(1994)。柱狀地盤改良應用於深開挖之分析研究。碩士論文,國立台灣工業技術學院,營建工程技術研究所,台北。
胡森、謝家麟(1997)。軟弱土層潛盾隧道內補強灌漿之建物保護。地工技術雜誌,(60),65-82。
黃南輝、黃奕祥、黃姿連、楊鵬飛(1997)。潛盾施工所導致之沉陷槽分析。地工技術雜誌,(60),45-56。
歐章煜(2017)。進階深開挖工程分析與設計。台北市: 科技圖書。
賴慶和、余明山、吳建閩、吳偉康(1997)。以二次注入灌漿控制潛盾施估引致之沉陷。地工技術雜誌,(60),83-96。
冀樹勇、林金成、陳錦清(2000)。間隙參數模式在潛盾隧道地盤位移之應用-Ⅰ:最佳化回饋分析。中興工程,(66),5-26。
賴建名、蘇啟鑫、胡庭豪(2006)。台北捷運潛盾隧道沉陷回饋分析與PLAXIS程式之應用。中興工程,(92),39-47。
蕭奎仁(2016)。應用等值參數於深開挖地盤改良分析之研究。碩士論文,國立台灣科技大學,營建工程研究所,台北。
闕河淵、吳沛軫、朱世忠、蘇信淵(1996)。地下工程施工對鄰近建物保護施作時機及成效檢討。地工技術雜誌,(54),77-86。

Amadou Jallow(2018). Numerical Study of Long-term Settlement Induced in Shield Tunneling (Master’s thesis). Dept. of Constr. Engrg., Nat. Taiwan Inst. of Technol., Taipei, Taiwan.
Brinkgreve, R., Engin, E., & Swolfs, W.M. (2017). Plaxis 3D 2017-User’s Manual. Delft, Netherlands, PLAXIS.
Clough, G. W., & Schmidt, B. (1981). Design and performance of excavations and tunnels in soft clay. In Soft Clay Engineering, Elsevier, 20, 567-634.
Calvello, M., & Finno, R. (2004). Selecting parameters to optimize in model calibration by inverse analysis. Computer and Geotechnics, 31(5),410-424.
Fattah, M.Y., Shlash, K.T. & Salim, N.M. (2013). Prediction of settlement trough induced by tunneling in cohesive ground. Acta Geotechnica, 8(2), 167-179.
Jaky, J. (1944). The coefficient of earth pressure at rest. J. Soc. Hungarian Architects Eng., 8 (22), 355-358.
Khoiri,M., & Ou, C.Y. (2013). Evaluation of deformation parameter for deep excavation in sand through case histories. Computer and Geotechnics, 47,57-67.
Lee, S.H.H. (1990). Regression models of shear wave velocity. J. Chinese Eng., 13(5), 519-532.
Lee,K.M., Rowe, R.K., & Lo, KY. (1992). Subsidence owing to tunneling. I. Estimating the gap parameter. Can. Geotech.J., 29(6), 929-940.
Loganathan, N.& Poulos H.G. (1998) Analytical prediction for tunneling-induced ground movements in Clays. J. Geotech. Geoenviron. Eng., 124 (9), 846-856.
Lim, A., Ou, C.Y., & Hsieh,P.G. (2010). Evaluation of clay constitutive models for analysis of deep excavation under undrained condition. J. GeoEng., 5(1),9-20.
Lim, A., & Ou, C.Y. (2017). Stress paths in deep excavation under undrained conditions and its influence on deformation analysis. Tunnel. Underground Sp. Technol., 63,118-132.
Martos, F. (1958). Concerning an approximate equation of the subsidence trough and its time factors. In Internation strata control congress, Leipzig, 191-205.
O’Reilly, M.P., New, B.M. (1982). Settlements above tunnels in the United Kingdom: their magnitude and prediction. In: Tunneling ’82: 3rd International Symposium, Birghton, East Sussex, United Kingdom, 225-289.
Peck,R.B. (1969). Deep excavation and tnnneling in soft ground. Proceedings of 7th International Conference Soil Mechanics and Foundation Engineering, Mexico, State of the Art Volume, 225-290.
Pitthaya, J., Panich, V., Pornpot, T., Pornkasem, J., & Dennes, T. B. (2018). Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: case study and 3D simulation. Acta Geotechnica, 14(1), 225-246.
Rowe,R.K., Lo,K.Y., & Kack, G.J. (1983). A method of estimating surface settlement above tunnels construction in soft ground. Can. Geotech.J., 20(8),11-22.
Schanz, T., Vermeer, P.A., & Bonnier,P.G. (1999). The hardening soil model: The hardening soil model: formulation and verification. In: Beyond 2000 in Computational Geotechnics-10 Years Plaxis, Rotterdam, 281-296.
Teng,F.C. (2010). Prediction of Ground Movement Induced by Excavation Using the Numerical Method with Consideration of Inherent Stiffness Anisotropy (Doctoral dissertation). Dept. of Constr. Engrg., Nat. Taiwan Inst. of Technol., Taipei, Taiwan.

QR CODE