簡易檢索 / 詳目顯示

研究生: 黃崇敏
Chong-Min Huang
論文名稱: 拉脹結構應用於氣管支架設計與有限元素分析
Application of auxetic structure to tracheal scaffold design and finite element analysis
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 徐慶琪
Ching-Chi Hsu
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 氣管支架拉脹結構有限元素分析參數變化
外文關鍵詞: Tracheal Scaffold, Auxetic Structure, Parameter Changes, Finite Element Analysis
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著積層製造技術的逐漸發展,跳脫了傳統氣管支架使用的材料及製作的方法框架。但多數只在材料的組合變化、簡單孔隙支架的設計或動物實驗等方面,取單一的領域進行探討,具有局限性。本研究將以兔子氣管為標的進行研究討論,製作出符合兔子氣管強度需求的拉脹結構之氣管支架。
    材料方面選擇生醫級類TPU光固化樹脂之IC27與Poly(ethylene glycol) diacrylate作為本研究氣管支架的主材料。以不同比例混合,通過接觸角儀器的測試,得知屬於親水性材料,並測得各材料性質。結構上對拉脹結構(Auxetice structure)的引入,通過電腦輔助繪圖軟體Creo,進行拉脹單元的徑向與軸向排列設計,分別為Radial aperture scaffold(RAS)與Axial Pore Scaffold(APS)支架。而傳統蜂巢孔隙支架Honeycomb pore scaffold(HPS),作為參照。通過有限元素分析(Finite Element Method,FEM),對所設計管狀支架的受力變化分析預測。軟體STL轉檔後由積層製造之DLP-AM系統列印,對三種管狀支架進行拉伸、抗壓和抗彎的測試。選出綜合性質最好的IP31-RAS-0.2mm管狀支架,其極限抗拉強度為5.0587 MPa,抗壓強度為4.9298 MPa,抗彎強度為7.2240 MPa。最後進行條寬變化的探討,在機械強度、結構等效楊氏模量與孔隙率等綜合考量下,仍是IP31-RAS-0.2mm管狀支架為最優選擇。


    In recent years, with the gradual development of layered manufacturing technology, it has escaped the framework of materials and manufacturing methods used in traditional tracheal scaffolds. However, most of them only take a single field for discussion in the combination of materials, the design of simple pore scaffolds, or animal experiments, which have limitations. This study will be discussed in the rabbit trachea as research subject, to produce a tracheal scaffold expansion structures conform rabbit trachea pull strength requirements.
    In terms of materials, IC27 and Poly(ethylene glycol) diacrylate, which are biomedical-grade TPU light-curable resins, were selected as the main materials of the tracheal scaffold in this study. Mixed in different proportions, through the test of the contact angle instrument, it is known that the material is hydrophilic, and the properties of each material are measured. In terms of structure, the introduction of auxetice structure, through computer-aided drawing software Creo, is used to design the radial and axial arrangement of auxetic units, which are Radial Aperture Scaffolds(RAS) and Axial Pore Scaffold(APS). The traditional Honeycomb Pore Scaffold(HPS), as a reference. Through finite element analysis (Finite Element Method, FEM), the force changes of the designed tubular scaffold are analyzed and predicted. After the software STL is converted, it will be printed by the DLP-AM system manufactured by Laminate, and the tensile, compressive, and bending tests of the three tubular scaffolds are carried out. The IP31-RAS-0.2mm tubular scaffold with the best comprehensive properties was selected, and its ultimate tensile strength was 5.0587 MPa, compressive strength was 4.9298 MPa, and bending strength was 7.2240 MPa. Finally, the change of strip width is discussed. Considering the comprehensive consideration of mechanical strength, structural equivalent Young's modulus, and porosity, the IP31-RAS-0.2mm tubular scaffold is still the best choice.

    摘要 III Abstract IV 第1章 緒論 6 1.1 研究背景 6 1.2 研究動機與目的 7 1.3 研究方法 7 1.4 論文架構 8 第2章 文獻探討 10 2.1 組織工程(Tissue Engineering)的基本介紹 10 2.1.1 支架之特性 13 2.1.2 高分子生醫材料 14 2.2 呼吸系統之簡介 19 2.2.1 氣管組成及作用簡介 19 2.2.2 氣管周邊組織 20 2.3 應用於氣管組織工程的相關技術 22 2.3.1 積層製造技術 22 2.3.2 人工氣管的體內預血管化 25 2.3.3 人工氣管支架發展現況 25 2.4 兔子氣管的相關受力與尺寸 27 2.5 拉脹結構的特點與現況簡述 29 第3章 氣管支架結構設計與有限元素分析 33 3.1 氣管支架設計 33 3.1.1 繪圖軟體簡介 33 3.1.2 氣管支架之設計方法及尺寸 34 3.2 材料與性質測試 37 3.2.1 材料介紹 38 3.2.2 材料配方 41 3.2.3 接觸角測試 42 3.2.4 材料微拉伸測試 44 3.3 管狀支架結構有限元素分析 48 3.3.1 Ansys之FEM有限元法簡介 48 3.3.2 材料編輯設定 49 3.3.3 網格設定 51 3.3.4 邊界及負載條件設定 51 3.3.5 收斂性分析 53 3.4 管狀支架之應力應變分佈分析結果 55 第4章 氣管支架製作與測試 59 4.1 氣管支架製作 59 4.1.1 DLP-AM系統介紹 59 4.1.2 動態光罩控制軟體 61 4.1.3 動態光罩產生器 62 4.1.4 列印參數 63 4.1.5 後固化處理 64 4.2 管狀支架測試 65 4.2.1 測試機台 65 4.2.2 拉伸實驗 66 4.2.3 抗壓實驗 67 4.2.4 抗彎曲實驗 67 4.3 支架機械性質之測試與有限元素分析結果 68 4.3.1 管狀支架徑向拉伸試驗結果 68 4.3.2 管狀支架徑向壓縮試驗結果 70 4.3.3 管狀支架抗彎試驗結果 72 4.3.4 結構等效楊氏模量對比分析 75 4.3.5 不同IP比例與不同種支架有限元素分析對比 77 4.3.6 管狀支架測試與有限元素分析數據對比 82 4.4 管狀支架對比 84 第5章 支架設計參數探討 89 5.1 條寬參數調整的變化 89 5.2 支架條寬變化前後之有限元素收斂性分析 91 5.3 支架條寬變化前後之強度對比及探討 92 第6章 結論與未來研究方向 97 6.1 結論 97 6.2 未來研究方向 98 第7章 參考文獻 99 附錄 FEM各情況下支架的應力應變分佈圖 105

    [1]Gao, B., Jing, H., Gao, M., Wang, S., Fu, W., Zhang, X., He, X. and Zheng, J., 2019. Long-segmental tracheal reconstruction in rabbits with pedicled Tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomaterialia, 97, pp.177-186.
    [2]Wu, W., Jia, S., Chen, W., Liu, X. and Zhang, S., 2019. Fast degrading elastomer scaffolded fascia remodels into tough and vascularized construct for tracheal regeneration. Materials Science and Engineering: C, 101, pp.1-14.
    [3]Wang, Z., Luan, C., Liao, G., Liu, J., Yao, X. and Fu, J., 2020. Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications. Advanced Engineering Materials, 22(10), pp.2000312.
    [4]Murphy, C., O’Brien, F., Little, D. and Schindeler, A., 2013. Cell-scaffold interactions in the bone tissue engineering triad. European Cells and Materials, 26, pp.120-132.
    [5]Hutmacher, D. and Garcia, A., 2005. Scaffold-based bone engineering by using genetically modified cells. Gene, 347(1), pp.1-10.
    [6]宋信文 梁晃千,2003,“建立人類的身體工房-組織工程”, 科學發展第362期。
    [7]楊婷琪,2002,“組織工程的重要元件-生物分子”,工研院經貿中心生醫組。
    [8]廖俊仁,2002,“組織工程用多孔隙骨架材料”,工研院生醫工程中心。
    [9]Yang, S., Leong, K., Du, Z. and Chua, C., 2001. The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors. Tissue Engineering, 7(6), pp.679-689.
    [10]Dixon, A., Jariwala, S., Bilis, Z., Loverde, J., Pasquina, P. and Alvarez, L., 2018. Bridging the gap in peripheral nerve repair with 3D printed and bioprinted conduits. Biomaterials, 186, pp.44-63.
    [11]蔡秉宏,1999,“以聚殼醣合成光交聯性衍生物之探討”,國立成功大學化學工程研究所,碩士論文。
    [12]Marcel Dekker, D. S. (1994). Medical application of synthetic polymers. NewYork,pp 725.
    [13]Park, J., Woo, D., Sun, B., Chung, H., Im, S., Choi, Y., Park, K., Huh, K. and Park, K., 2007. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Journal of Controlled Release, 124(1-2), pp.51-59.
    [14]Herrera, M., Matuschek, G. and Kettrup, A., 2002. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polymer Degradation and Stability, 78(2), pp.323-331.
    [15]https://sen842cova.blogspot.com/2015/07/esophagus-and-trachea-anatomy.html
    [16]Melchels, F., Feijen, J. and Grijpma, D., 2010. A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), pp.6121-6130.
    [17]Fiorentino, A., Piazza, C. and Ceretti, E., 2016. Anti-migration enhanced tracheal scaffold design, rapid manufacturing and experimental tests. Rapid Prototyping Journal, 22(1), pp.178-188.
    [18]Joo, Y., Park, J., Cho, D. and Sun, D., 2013. Morphologic assessment of polycaprolactone scaffolds for tracheal transplantation in a rabbit model. Tissue Engineering and Regenerative Medicine, 10(2), pp.65-70.
    [19]Ahn, C., Son, K., Yu, Y., Kim, T., Lee, J. and Lee, J., 2019. Development of a flexible 3D printed scaffold with a cell-adhesive surface for artificial trachea. Biomedical Materials, 14(5), pp.055001.
    [20]Safshekan, F., Tafazzoli-Shadpour, M., Abdouss, M. and Shadmehr, M., 2016. Viscoelastic Properties of Human Tracheal Tissues. Journal of Biomechanical Engineering, pp139(1).
    [21]The epiglottis, Anatomy Medicine.
    [22]Guo, J., Hu, Z., Yan, F., Lei, S., Li, T., Li, X., Xu, C., Sun, B., Pan, C. and Chen, L., 2020. Angelica dahurica promoted angiogenesis and accelerated wound healing in db/db mice via the HIF-1α/PDGF-β signaling pathway. Free Radical Biology and Medicine, 160, pp.447-457.
    [23]Frejo, L. and Grande, D., 2019. 3D-bioprinted tracheal reconstruction: an overview. Bioelectronic Medicine, 5(1).
    [24]Li, H., Oh, J., Sinha, T. and Kim, J., 2019. Synergistic influence of keratin and TPU: An approach towards bioinspired artificial skin. Materials Chemistry and Physics, 223, pp.196-201.
    [25]Jones, M., Rueggeberg, F., Faircloth, H., Cunningham, A., Bush, C., Prosser, J., Waller, J., Postma, G. and Weinberger, P., 2014. Defining the biomechanical properties of the rabbit trachea. The Laryngoscope, 124(10), pp.2352-2358.
    [26]Jung, S., Lee, S., Kim, H., Park, H., Wang, Z., Kim, H., Yoo, J., Chung, S. and Kim, H., 2016. 3D printed polyurethane prosthesis for partial tracheal reconstruction: a pilot animal study. Biofabrication, 8(4), p.045015.
    [27]Loewen, M. and Walner, D., 2001. Dimensions of rabbit subglottis and trachea. Laboratory Animals, 35(3), pp.253-256.
    [28]Xu, Y., Li, D., Yin, Z., He, A., Lin, M., Jiang, G., Song, X., Hu, X., Liu, Y., Wang, J., Wang, X., Duan, L. and Zhou, G., 2017. Tissue-engineered trachea regeneration using decellularized trachea matrix treated with laser micropore technique. Acta Biomaterialia, 58, pp.113-121.
    [29]Zhao, H. and Liang, W., 2017. A novel comby scaffold with improved mechanical strength for bone tissue engineering. Materials Letters, 194, pp.220-223.
    [30]Huan, Z., Chu, H., Yang, J. and Sun, D., 2017. Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering. IEEE Transactions on Biomedical Engineering, 64(4), pp.755-764.
    [31]吳姿儀,2020,“以積層製造技術進行三維機械超穎結構之設計與開發 ”,國立成功大學材料科學及工程學系,碩士論文。
    [32]許家寧,2020,“積層製造生物可降解Poly(glycerol sebacate) acrylate/Poly(ethylene glycol) diacrylate神經導管之研究”,國立台灣科技大學機械工程研究所,碩士論文。
    [33]吳宗翰,2015,“積層製造椎籠于不同結構設計與複合材料組合之生醫力學分析”,國立台灣科技大學機械工程研究所,碩士論文。
    [34]Michael F.Ashby,2017,Materials Seletction in Mechanical Design-Fifth Edition,Todd Green
    [35]Trabelsi, O., del Palomar, A., López-villalobos, J., Ginel, A. and Doblaré, M., 2010. Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea. Medical Engineering & Physics, 32(1), pp.76-82.
    [36]Park, J., Jung, J., Kang, H., Joo, Y., Lee, J. and Cho, D., 2012. Development of a 3D bellows tracheal graft: mechanical behavior analysis, fabrication and an in vivo feasibility study. Biofabrication, 4(3), pp.035004.

    無法下載圖示 全文公開日期 2031/09/17 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE