簡易檢索 / 詳目顯示

研究生: 秦仕緯
Shi-Wei Qin
論文名稱: 低碳鋼經包覆擴散及熱浸鍍鋁處理於熱腐蝕環境之高溫潛變
The Creep of Low-Carbon Steel with Pack Cementation and Hot-Dipped Aluminum Pre-treatments in Air and Hot-Corrosion Environments
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 開物
Wu Kai
蔡秉均
Ping-Chun Tsai
梁煥昌
Huan-Chang Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 鋁塗層高溫擴散熱腐蝕
外文關鍵詞: Commercial aluminides, High temperature diffusion, Hot corrosion
相關次數: 點閱:261下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究底材使用低碳鋼,分別經包覆擴散滲鐵鋁及熱浸鍍鋁,於 750 ℃ 進行高溫空氣及沉積 NaCl/Na2SO4 高溫熱腐蝕潛變試驗,探討潛變特性。研究結果顯示,滲鐵鋁之外鋁化層及內鋁化層分別為延性 FeAl 相及 Fe3Al 相,熱浸鍍鋁之外鋁化層及內鋁化層則分別為 Al + FeAl3 相及硬脆之 Fe2Al5 相。於 750 ℃ 高溫擴散後,滲鐵鋁之外鋁化層及內鋁化層仍為 FeAl 相及 Fe3Al 相;熱浸鍍鋁之外鋁化層及內鋁化層轉變為 Fe2Al5 + FeAl2 相及 FeAl 相。熱浸鍍鋁於相轉變過程,因鐵原子擴散速度較鋁原子快,於塗層中生成 Kirkendall 孔洞。高溫及熱腐蝕潛變結果顯示,由於熱浸鍍鋁塗層相較於滲鐵鋁塗層較厚,能更有效地保護底材,因此熱浸鍍鋁壽命皆高於滲鐵鋁。由於滲鐵鋁之 FeAl 相及 Fe3Al 相為延性相且與底材相容性較好,而熱浸鍍鋁之 Fe2Al5 相及 FeAl2 相為脆性相,加上塗層中有許多孔洞,以致滲鐵鋁伸長率皆大於熱浸鍍鋁。結果顯示,經兩種鋁化處理後生成之保護性之鋁化層於高溫環境能有效提升低碳鋼底材抗氧化能力,並延緩底材受腐蝕鹽之侵蝕。


The creep properties of the low-carbon steel and its aluminized counterparts with the pack cementation (PC) and hot dipped aluminum (HDA) treatments were studied in dry air and in NaCl/Na2SO4 hot-corrosion environments at 750 ℃. Duplex ductile aluminized-layers of the inner Fe3Al and the outer FeAl formed on the PC samples, while those of the inner Fe2Al5 and the outer Al and FeAl3 were observed on the HDA samples. The PC samples retained unchanged structures after high-temperature diffusion at 750 ℃, however, those changed to the inner FeAl and the outer Fe2Al5 and FeAl2. The phase transformation of HDA samples was due mainly to faster transports of iron atoms with respect to those of aluminum ones, which in turn resulted in forming Kirkendall pores in the HDA coatings. It was found that HDA samples revealed thicker coating layers, which provided a better protection for the carbon-steel substrate, leading to a higher creep lifetime, as compared with PC samples. On the other hands, by forming stable FeAl and Fe3Al layers on PC samples, which served as ductile phases to the carbon-steel, which provided a better elongation value with respect to HD samples, in which brittle Fe2Al5 and FeAl2 phases have Kirkendall pores. In summary, both PC and HDA treatments could give much better oxidation-resistance for the carbon-steel substrate, which in turn resulted in a reduction of the hot-corrosion attack.

摘要 I Abstract II 誌謝 III 第一章、前言 1 第二章、文獻回顧 3 2.1 包覆擴散處理 3 2.1.1 形成機制 3 2.1.2 鹵化物活化劑之氣體傳輸動力學 5 2.1.3 高溫低活性與低溫高活性 8 2.2 熱浸鍍鋁 11 2.2.1 形成機制 11 2.3 鐵鋁介金屬化合物 13 2.4 潛變 16 2.4.1 潛變三階段 17 2.4.2 潛變變形機制 19 2.4.3 熱浸鋁塗層的潛變破壞 20 2.5 異常晶粒成長 21 2.6 混合鹽之熱腐蝕 22 第三章、實驗方法 26 3.1 實驗流程 26 3.2 研究材料製備 26 3.2.1 拉伸試片 26 3.2.2 片狀試片 27 3.3 包覆擴散處理 28 3.4 熱浸鍍鋁處理 30 3.5 混合鹽沉積 32 3.6 高溫拉伸試驗 33 3.7 高溫潛變及熱腐蝕潛變 36 3.8 無應力高溫擴散試驗 37 3.9 主要分析設備 38 3.10 標準差 38 第四章、實驗結果 39 4.1 片狀試片經包覆擴散處理使用不同活化劑之滲鐵鋁層 39 4.2 經鋁化後之拉伸試片 43 4.2.1 經包覆擴散處理 43 4.2.2 經熱浸鍍鋁處理 47 4.2.3 包覆擴散及熱浸鍍鋁塗層經無應力高溫擴散之截面 形貌 48 4.3 高溫潛變 50 4.3.1 低碳鋼裸材 51 4.3.2 經包覆擴散處理 55 4.3.3 經熱浸鍍鋁處理 60 4.4 高溫熱腐蝕潛變試驗 66 4.4.1 低碳鋼裸材 67 4.4.2 經包覆擴散處理 70 4.4.3 經熱浸鍍鋁處理 75 第五章、討論 81 5.1 高溫潛變 81 5.2 高溫熱腐蝕潛變 85 第六章、結論 87 參考文獻 88

[1]Y. Han, Y. Liu, M. Li, and J. Huang. (2012). A review of development of micro-channel heat exchanger applied in air-conditioning system. Energy Procedia, 14, 148–153.
[2]C. Luzzatto, A. Morgana, S. Chaudourne, T. O’Doherty, and G. Sorbie. (1997). A new concept composite heat exchanger to be applied in high-temperature industrial processes. Applied Thermal Engineering, 17 (8-10), 789–797.
[3]R. K. Shah, B. Thonon, and D. M. Benforado. (2000). Opportunities for heat exchanger applications in environmental systems. Applied Thermal Engineering, 20 (7), 631–650.
[4]H.Y. Lee, J. B. Kim, J. H. Eoh, Y. B. Lee, and H. Y. Park. (2011). High Temperature Design and Damage Evaluation of Mod. 9Cr-1Mo Steel Heat Exchanger. ASME 2011 Pressure Vessels and Piping Conference: Volume 1, Journal of Pressure Vessel Technology.
[5]M. Mazaheri, F. Djavanroodi, and K. M. Nikbin. (2010). Creep life assessment of an overheated 9Cr-1Mo steel tube. International Journal of Pressure Vessels and Piping, 87 (12), 746–752.
[6]J. Priss, H. Rojacz, I. Klevtsov, A. Dedov, H. Winkelmann, and E. Badisch. (2014). High temperature corrosion of boiler steels in hydrochloric atmosphere under oil shale ashes. Corrosion Science, 82, 36–44.
[7]C. Xu, L. Du, B. Yang, and W. Zhang. (2011). The effect of Al content on the galvanic corrosion behaviour of coupled Ni/graphite and Ni–Al coatings. Corrosion Science, 53 (6), 2066–2074.
[8]P. Audigié, A. Rouaix Vande Put, A. Malié, and D. Monceau. (2018). High-temperature cyclic oxidation behavior of Pt-rich γ-γ’ coatings. Part I: oxidation kinetics of coated AM1 systems after very long-term exposure at 1100°C. Corrosion Science, 144, 127-135.
[9]E. Serra, H. Glasbrenner, and A. Perujo. (1998). Hot-dip aluminium deposit as a permeation barrier for MANET steel. Fusion Engineering and Design, 41 (1-4), 149–155.
[10]R. Mévrel, C. Duret, and R. Pichoir. (1986). Pack cementation processes. Materials Science and Technology, 2 (3), 201–206.
[11]Sasaki, T and Yakou, T. (2006). Features of intermetallic compounds in aluminized steels formed using aluminum foil. Surface and Coatings Technology, 201 (6), 2131–2139.
[12]M. S. Han, Y. B. Woo, S. C. Ko, Y. J. Jeong, S. K. Jang, and S. J. Kim. (2009). Effects of thickness of Al thermal spray coating for STS 304. Transactions of Nonferrous Metals Society of China, 19 (4), 925–929.
[13]C. Christoglou, N. Voudouris, G. N. Angelopoulos, M. Pant, and W. Dahl. (2004). Deposition of aluminium on magnesium by a CVD process. Surface and Coatings Technology, 184 (2-3), 149–155.
[14]F. J. Monteiro, M. A. Barbosa, D. R. Gabe, and D. H. Ross. (1988). Surface pretreatments of aluminium for electroplating. Surface and Coatings Technology, 35 (3-4), 321–331.
[15]M. Muralidhar Singh, G. Vijaya, M. S. Krupashankara, B. K. Sridhara, and T. N. Shridhar. (2018). Deposition and Characterization of Aluminium Thin film Coatings using DC Magnetron Sputtering Process. Materials Today: Proceedings, 5 (1), 2696–2704.
[16]Z. D. Xiang and P. K. Datta. (2006). Relationship between pack chemistry and aluminide coating formation for low-temperature aluminisation of alloy steels. Acta Materialia, 54 (17), 4453–4463.
[17]S. P. Chakraborty, S. Banerjee, K. Singh, I. G. Sharma, A. K. Grover, and A. K. Suri. (2008). Studies on the development of protective coating on TZM alloy and its subsequent characterization. Journal of Materials Processing Technology, 207 (1-3), 240–247.
[18]J. E. Nicholls (1964). Hot‐dipped aluminium coatings. Anti-Corrosion Methods and Materials, 11 (10), 16–21.
[19]W. J. Smith and F. E. Goodwin. (2010). Hot Dipped Coatings. Shreir’s Corrosion, 2556–2576.
[20]A. Agüero, J. García de Blas, R. Muelas, A. Sánchez, and S. Tsipas. (2001). Steam Oxidation Resistant Coatings for Steam Turbine Components: A Feasibility Study. Materials Science Forum, 369 (3), 939–946.
[21]P. F. Tortorelli and K. Natesan. (1998). Critical factors affecting the high-temperature corrosion performance of iron aluminides. Materials Science and Engineering: A, 258 (1-2), 115–125.
[22]Standard Specification for Aluminum Diffusion Coating Applied by Pack Cementation Process, ASTM B875 – 96 (2018).
[23]B. K. Gupta, A. K. Sakhel, and L. L. Seigle. (1976). On the kinetics of pack aluminization. Thin Solid Films, 39, 313-320.
[24]B. K. Gupta and L. L. Seigle. (1980). The effect on the kinetics of pack aluminization of varying the activator. Thin Solid Films, 73, 365-371.
[25]MC. Galetz, Coatings for Superalloys. (2015). Materials Science. 286
[26]S. R. Levine and R. M. Caves. (1974). Thermodynamics and Kinetics of Pack Aluminide Coating Formation on IN-100. Journal of The Electrochemical Society, 121 (8), 1051.
[27]S. R. Ke, J. Wang, C. Y. Zhu, and Z. D. Xiang. (2015). On the selection of halide activators for the formation of hybrid Ni-aluminide/Ni coatings on creep resistant ferritic steels by low temperature pack cementation process. Materials Chemistry and Physics, 162, 263–272.
[28]R. F. Glória, N Chaia, A. W. Cruz, L. B. Alckmin, C. A. Nunes, and G. Rodriguesa. (2021). Aluminide coating on Mar-M246 nickel superalloy by halide activated pack cementation (HAPC). Journal of Surface and Coating Technology, 411, 126999.
[29]Z. D. Xiang and P. K. Datta. (2005). Effects of pack composition on the formation of aluminide coatings on alloy steels at 650 ℃. Journal of Materials Science, 40 (8), 1959–1966.
[30]L. Hou, B. Li, R. Wu, L. Cui, P. Ji, R. Long, J. Zhang, Li. Xinlin, and D. Anping. (2017). Microstructure and mechanical properties at elevated temperature of Mg-Al-Ni alloys prepared through powder metallurgy. Journal of Materials Science & Technology, 33(9), 947–953.
[31]E. M. Schulson, COSAM Program Overview. (1982). NASA TN 830006, National Aeronautics and Space Administration, Washington, D.C, 175.
[32]M. M. P. Janssen and G. D. Rieck. (1967). Reaction diffusion and Kirkendall-effect in the nickel-aluminum system. Transactions of the Metallurgical Society of AIME, 239(9), 1372-1385.
[33]S. Shankar and L. L. Seigle. (1978). Interdiffusion and intrinsic diffusion in the Ni Al (δ) phase of the Al-Ni system. Metallurgical Transactions A, 9(10), 1467–1476.
[34]G. W. Goward and D. H. Boone. (1971). Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxidation of Metals, 3 (5), 475–495.
[35]J. R. Nicholls, K. A. Long, and N. J. Simms. (2010). Diffusion Coating Shreir’s Corrosion, 2532-2555.
[36]H. Glasbrenner and O. Wedemeyer. (1998). Comparison of hot dip aluminised F82H-mod. steel after different subsequent heat treatments. Journal of Nuclear Materials, 257(3), 274–281.
[37]Y. Ruan, N. Yan, H. Z. Zhu, K. Zhou, and B. Wei. (2017). Thermal performance determination of binary Fe-Al alloys at elevated temperatures. Journal of Alloys and Compounds, 701, 676-681.
[38]E. Gebhardt and W. Obrowski. (1953). Reaktionen von festem eisen mit schmelzen aus aluminium und aluminiumlegierungen. International Journal of Materials Research, 44 (4), 154-160.
[39]G. Eggeler, H. Vogel, J. Friedrich, and H. Kaesche. (1985). Target Preparation for the Transmission Electron Microscopic Identification of the Al sub 3 Fe (theta -Phase) in Hot-Dip Aluminised Low Alloyed Steel. Praktische Metallographie, 22 (4), 163-170.
[40]G. Xu, K. Wang, X. Dong, L. Yang, M. Ebrahimi, H. Jiang, Q. Wang, and W. Ding. (2020). Review on corrosion resistance of mild steels in liquid aluminum. Journal of Materials Science and Technology, 71, 12-22.
[41]G.Pasche, M. Scheel, R. Schäublin, C. Hébert, M. Rappaz, and A. Hessler-Wyser. (2013). Time-Resolved X-Ray Microtomography Observation of Intermetallic Formation Between Solid Fe and Liquid Al. Metallurgical and Materials Transactions A, 44 (9), 4119-4123.
[42]U. Burkhardt, Y. Grin, M. Ellner, and K. Peters. (1994). Structure refinement of the iron–aluminium phase with the approximate composition Fe2Al5. Acta Crystallographica Section B Structural Science, 50 (3), 313–316.
[43]T. Sasaki and T. Yakou. (2006). Features of intermetallic compounds in aluminized steels formed using aluminum foil. Surface and Coatings Technology, 201 (6), 2131–2139.
[44]C. G. McKamey, J. H. DeVan, P. F. Tortorelli, and V. K. Sikka. (1991). A review of recent developments in Fe3Al-based alloys. Journal of Materials Research, 6 (08), 1779–1805.
[45]R. Oguma, S. Matsumura, and T. Eguchi. (2008). Kinetics of B2- and D03-type ordering and formation of domain structures in Fe–Al alloys. Journal of Physics: Condensed Matter, 20 (27), 275225.
[46]C. G. McKamey, C. T. Liu, S. A. David, J. A. Horton, D. H. Pierce, and J. J. Campbell, Development of Iron Aluminides for Coal Conversion Systems, ORNL/TM-10793 (Oak Ridge National Laboratory, Oak Ridge, TN, July 1988).
[47]K. Suganuma (1993). Properties of Fe3Al matrix composites with Al2O3 particle dispersions. Journal of Alloys and Compounds, 197 (1), 29–34.
[48]K. Sun, A. Li, X. Cui, Y. Yin, and P. Li. (2001). Sintering technology research of Fe3Al/Al2O3 ceramic composites. Journal of Materials Processing Technology, 113 (1-3), 482–485.
[49]U. R. Kattener and B. P. Burton. Binary phase diagrams. (1992). In ASM Metals Handbook on Alloy Phase Diagrams, 10th Ed.; ASM International:Materials Park, OH.
[50]A. I. Begunov and M. P. Kuz’min. (2014). Thermodynamic Stability of Intermetallic Compounds in Technical Aluminum. Journal of Siberian Federal University, 132-137.
[51]K. Naumenko and H. Altenbach. (2007). Modeling of Creep for Structural Analysis. Springer Berlin Heidelberg.
[52]A. Saha (2016). Boiler tube failures. Handbook of Materials Failure Analysis with Case Studies from the Chemicals, Concrete and Power Industries, 49–68.
[53]G. R. Holcomb (2011). Steam oxidation in steam boiler and turbine environments. Power Plant Life Management and Performance Improvement, 453–489.
[54]C. Pandey, M. M. Mahapatra, P. Kumar, and N. Saini. (2018). Some studies on P91 steel and their weldments. Journal of Alloys and Compounds, 743, 332-364.
[55]M. A. Meyers and K. K. Chawla. Mechanical behavior of materials. Prentice Hall, 1999.
[56]黃秉毅,低碳鋼熱浸鍍鋁及銲接之高溫疲勞,國立台灣科技大學機械工程所碩士論文,民國 105 年。
[57]J. A. Kowalik and A. R. Marder. (1984). The effect of temperature on abnormal grain growth in low carbon steel. Scripta Metallurgica, 18 (4), 305–307.
[58]張玉簫,熔射鋁 A36/IN82/316L 異質銲件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變,國立台灣科技大學機械工程所碩士論文,民國 107 年。
[59]賴立霖,熱浸鍍鋁A36低碳鋼銲接件於氯化鈉/硫酸鈉熱腐蝕環境之高溫潛變,國立台灣科技大學機械工程所碩士論文,民國 107 年。
[60]S. M. Muthu and M. Arivarasu. (2019). Investigations of hot corrosion resistance of HVOF coated Fe based super alloy a-286 in simulated gas turbine environment. Engineering Failure Analysis, 104224.
[61]D. Mudgal, L. Ahuja, D. Bhatia, S. Singh, and S. Prakash. (2016). High temperature corrosion behaviour of superalloys under actual waste incinerator environment. Engineering Failure Analysis, 63, 160–171.
[62]N. J. Simms, A. Encinas-Oropesa, and J. R. Nicholls. (2004). Development of Hot Corrosion on Coated Single Crystal Superalloys Materials Science Forum, 941-948.
[63]J. A. Goebel and F. S. Pettit. (1970). Na2SO4-induced accelerated oxidation (hot corrosion) of nickel. Metallurgical Transactions, 1 (7), 1943–1954.
[64]N. S. Bornstein and M. A. DeCrescente. (1971). The role of sodium in the accelerated oxidation phenomenon termed sulfidation. Metallurgical Transactions, 2 (10), 2875–2883.
[65]K. P. Lillerud and P. Kofstad. (1984). Sulfate-induced hot corrosion of nickel. Oxidation of Metals, 21 (5-6), 233–270.
[66]G. Li, H. Cheng, S. Chen, X. Lu, Q. Xu, and C. Lu. (2018). Mechanism of Na2SO4 Promoting Nickel Extraction from Sulfide Concentrates by Sulfation Roasting-Water Leaching Metallurgical and Materials Transactions B, 49 (3), 1136-1148.
[67]蘇永華,鐵基合金於氯化鈉/硫酸鈉混合鹽之熱腐蝕,國立台灣科技大學機械所碩士論文,民國 88 年。
[68]鄭維仁、王朝正,防蝕工程,第二十二卷,第二期,2008,第 287-294 頁。
[69]鄭維仁、王朝正,以 EBSD 觀察低碳鋼熱浸鋁化層的成長行為, 防蝕工程,第二十三卷,第二期,2009,第 117-124 頁。
[70]Y. Y. Chang, C. C. Tsaur, and J. C. Rock. (2006). Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation. Surface and Coatings Technology, 200 (22-23), 6588–6593.
[71]C. Wang, J. Lee, and T. Twu. (2003). Corrosion behaviors of low carbon steel, SUS310 and Fe–Mn–Al alloy with hot-dipped aluminum coatings in NaCl-induced hot corrosion. Surface and Coatings Technology, 163-164, 37–43.
[72]C. A. C. Sequeira and L. Amaral. (2014). Role of Kirkendall effect in diffusion processes in solids. Transactions of Nonferrous Metals Society of China, 24 (1), 1–11.
[73]L. Yajiang, Z. Yonglan, and L. Yuxian. (1995). Characteristics of phase constitution in the Fe-Al alloy layer of calorized steel pipe. Journal of Materials Science, 30 (10), 2635–2639.
[74]A. Bahadur and O. N. Mohanty. (1990). Structural Studies of Calorized Coatings on Mild Steel. Materials Transactions, JIM, 31 (11), 948–953.
[75]滿志謙,高溫應力對低碳鋼熱浸鍍鋁層之影響,國立台灣科技大學機械所碩士論文,民國 98 年。
[76]馬錫章、王朝正,防蝕工程,第十四卷,第二期,2000,第 1-12 頁。

QR CODE