簡易檢索 / 詳目顯示

研究生: 莊博閔
PO-MIN CHUANG
論文名稱: 斜向衝擊噴流受橫流影響的流場特性
Flow Characteristics of an Inclined Impinging Jet in Crossflow
指導教授: 黃榮芳
Rong-Fang Huang
口試委員: 趙振綱
Ching-Kong Chao
林怡均
Yi-jiun Lin
許清閔
Ching Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 218
中文關鍵詞: 斜向衝擊噴流橫流
外文關鍵詞: Inclined Impinging Jet, Crossflow
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 受橫流影響的衝擊噴流,在噴流與橫流的交界處上游會產生一至兩個馬蹄型渦旋,在應用上時常會因為有馬蹄型渦旋而產生負面的影響。本研究使用實驗方法探討受橫流影響之傾斜衝擊噴流的流場特性。在一拖曳式水槽中安裝噴流與壁面設備,改變噴流後傾角度(α = 0° ~ 50°)以及噴流對橫流速度比(Ru ≡ uj /uc = 3 ~ 85),使用雷射光頁輔助質點軌跡流動可視化技術觀測噴流與壁面間垂直面與水平面的流場特徵行為,再以質點影像測速儀量測速度場,進行流動拓樸分析,並計算渦度及紊流強度。受橫流影響之傾斜衝擊噴流的流場狀態,在垂直對稱面出現三種特徵模態:(1)無衝擊、(2)輕微衝擊、(3)衝擊效應主宰。在相同噴流對橫流速度比的情況下,隨著傾斜角度的增加,噴流對壁面的撞擊影響減弱,當速度比小於7,噴流的後傾斜角度小於50度時,噴流對壁面的影響較弱,為無衝擊模態;當速度比大於20,噴流的後傾斜角度可以有效的控制渦旋數量的產生。在相同傾斜角時,隨著噴流對橫流速度比增加,噴流對壁面的撞擊影響增強。水平面流場觀測結果顯示,無衝擊模態中,在靠近壁面的位置並無特殊流場結構;輕微衝擊模態中,靠近壁面處噴流輕微衝擊壁面會產生側向噴流擴張;衝擊效應主宰模態中,在距離壁面較近的水平面會產生馬蹄型渦旋,三種模態在圓管與噴流出口下游處皆會有渦旋逸放的現象。渦度與紊流強度分佈顯示,於衝擊效應主宰模態中,因橫流對衝擊噴流而產生的渦流附近會呈現較大的渦度與紊流強度。


    An impinging jet in crossflow would generate one or two horseshoe vortices around upstream corner of the jet and crossflow. The horseshoe vortices often caused negative effects in engineering applications. The flow characteristics of an inclined impinging jet in crossflow was studied experimentally in a towing water tank. The water jet flow was provided via a system composed of a pump and a stainless-steel tube. The wall subject to the impingement of the water jet was an acrylic flat plate installed at a distance under the exit of the water jet. The tube and acrylic flat plate were linked together and immersed in the water of the towing water tank. The towing motion applied to the tube and flat plate induced the crossflow which would influence the flow field of the impinging jet. Two dominant physical and geometric non-dimensional parameters were varied: (1) the jet-to-crossflow velocity ratio (Ru ≡ uj /uc = 3 – 85) and (2) the jet inclination angle (α = 0° ~ 50°). The laser-light sheet particle tracking flow visualization technique was used to obtain images of tracer particles seeded in the flow. A particle image velocimetry (PIV) was applied to measure the velocity field. The velocity vectors, streamlines, topological flow patterns, vorticity distributions, and turbulence intensities were calculated and analyzed. Three characteristic flow modes: no impingement, slight impingement, and impingement effect dominated modes were observed in the domain of Ru and α in the vertical symmetry plane. In the no impingement mode, the jet-to-crossflow velocity ratio was low so that the jet was brought to the downstream area without hitting the wall surface. In the slight impingement mode, the jet-to-crossflow velocity ratio was higher than that of the no impingement mode so that the jet impinged slightly on the wall before flushed downstream by the crossflow. No particular flow structures were observed. In the impingement effect dominated mode, the jet-to-crossflow velocity ratio was higher than that of the slight impingement mode so that the jet strongly impinged on the wall and was flushed downstream by the crossflow. One or two vortices might appear upstream the bent jet, which were induced by the interaction between the impingement of the jet on the wall and the crossflow at mid to high values of Ru and α. In the horizontal plane, no specific flow structures were found in the no impingement mode. In the slight impingement mode, the slight impingement of the jet on the wall would cause lateral expansion of the jet flow. The horseshoe flow structure appeared in the impingement effect dominated mode. The vorticities and turbulence intensities revealed notably high values around the area of the vortices.

    摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 1. 1 研究動機 1. 2 文獻回顧 1.2. 1 衝擊噴流 1.2. 2 受橫流影響之衝擊噴流 1. 3 研究目標 第二章 實驗設備、儀器與方法 2. 1 實驗設備 2.1. 1 拖曳式水槽 2.1. 2 圓管與壁面模型 2.1. 3 直流循環泵浦與浮子式流量計 2. 2 水槽控制方法 2.2. 1 馬達控制器 2. 3 實驗儀器與方法 2.3. 1 雷射光頁 2.3. 2 數位相機 2.3. 3 無限定時快門線 2.3. 4 質點特性分析 2.3. 5 質點軌跡流場觀察法(PTFV) 2.3. 6 質點影像速度儀 第三章 傾斜衝擊噴流之流場特徵 3.1 垂直對稱面之流場特徵 3.1.1 垂直對稱面之流場特徵 3.1.2 垂直對稱面之流場模態分區圖 3.2 水平面之流場特徵 3.2.1 水平面隨時間衍化之流場特徵 3.2.2 水平面之流場模態分區圖 第四章 傾斜衝擊噴流之速度場 4.1 垂直對稱面之速度場特徵 4.1.1 垂直對稱面之速度向量與流線分佈 4.1.2 垂直對稱面之拓樸分析 4.1.3 垂直對稱面之速度分佈 4.1.4 垂直對稱面之渦度分佈 4.1.5 垂直對稱面之紊流強度分佈 4.2 水平面之速度場特徵 4.2.1 水平面之速度向量與流線分佈 4.2.2 水平面之拓樸分析 4.2.3 水平面之渦度分佈 4.2.4 水平面之紊流強度分佈 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    [1] Wang, X. K., Niu, G.-P., Yuan, S.-Q., Zheng, J. X., and Tan, S. K., “Experimental investigation on the mean flow field and impact force of a semiconfined round impinging jet,” Fluid Dynamics Research, Vol. 47, No. 2, 2015.
    [2] Bradshaw, B. A., and Edna, M. Love., “The normal impingement of a circular air jet on a flat surface,” Reports and Memoranda, No. 3205, 1959.
    [3] Landreth, C. C., and Adrian, R. J., “Impingement of a low Reynolds number turbulent circular jet onto a flat plate at normal incidence,” Experiments in Fluids, No. 9, 1990, pp. 74-84.
    [4] Myszko, M., and Knowles, K., “Development of a wall jet from an impinging, round turbulent, compressible jet,” AIAA Fluid Dynamics Conference, 1994, pp. 1-7.
    [5] Koichi Nishino., Masanori Samada., Keiichi Kasuya, and Kahoru Torii., “Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow,” International Journal of Heat and Fluid Flow, Vol. 17, No. 3, 1996, pp. 193-201.
    [6] Lee, D. H., Chung, Y. S., and Kim, D. S., “Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet,” Int. J. Heat and Fluid Flow, Vol. 18, No. 1, 1997, pp. 160-169.
    [7] Fleischer, A. S., Kramer, K., Goldstein, R. J., “Dynamics of the vortex structure of a jet impinging on a convex surface,” Experimental Thermal and Fluid Science, Vol. 24, No. 3-4, 2001, pp. 169-175.
    [8] O'Donovan, T. S., Murray, D. B., Torrance, A. A., “Jet heat transfer in the vicinity of a rotating grinding wheel,” J. Mechanical Engineering Science, Vol. 220, No. 6, 2006, pp. 837-845.
    [9] Attalla, M., Hussein, M., and Specht, E., “Effect of inclination angle of a pair of air jets on heat transfer into the flat surface,” Experimental Thermal and Fluid Science, Vol. 85, 2017, pp. 85-94.
    [10] Beltaos, S., “Oblique impingement of circular turbulent jets,” Journal of Hydraulic Research, Vol. 14, No. 1, 1976, pp. 17-36.
    [11] Fan, J. Y., Yan, Z., and Wang, D. Z., “Experimental study on the vortex formation and entrainment characteristics for a round transverse jet in shallow water,” Journal of Hydrodynamics, Vol. 21, No. 3, 2009, pp. 386-393.
    [12] Barata, J. M. M., Durao, D. F. G., Heitor, M. V., and McGuirk, J. J., “On the analysis of an impinging jet on ground effects,” Experiments in Fluids, Vol. 15, No. 2, 1993, pp. 117-129.
    [13] Barata, J. M. M., and Durao, D. F. G., “Laser-Doppler measurements of impinging jet flows through a crossflow,” Experiments in Fluids, Vol. 36, No. 5, 2004, pp. 665-674.
    [14] Barata, J. M. M., Ribeiro, S., Santos, P., and Silva, A. R. R., “Experimental study of a ground vortex,” Journal of Aircraft, Vol. 46, No. 4, 2009, pp. 1152-1159.
    [15] Dennis, R. F., Tso, J., and Margason, R. J., “induced Surface Pressure Distribution of a Subsonic Jet in a Crossflow,” AIAA Fluid Dynamics Conference, 1994, pp. 1-9.
    [16] Nakabe, K., Inaoka, K., Ai, T., and Suzuki, K., “Flow visualization of longitudinal vortices induced by an inclined impinging jet in a crossflow—effective cooling of high temperature gas turbine blades,” Energy Conversion and Management, Vol. 38, No. 10-13, 1997, pp. 1145-1153.
    [17] Chenglong, W., Lei, L., Lei, W., and Bengt, S., “Heat transfer and fluid flow of a single jet impingement in Crossflow modified by a vortex generator pair,” American Society of Mechanical Engineers (ASME), 2016, pp. 1-8.
    [18] Flagan, R. C., and Seinfeld, J. H., Fundamentals of air pollution engineering. Prentice Hall, Engle wood Cliffs, New Jersey, 1988.
    [19] Baker, C., “The turbulent horseshoe vortex,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 6, No. 1-2, 1980, pp. 9-23.
    [20] Perry, A., and Fairlie, B., “Critical points in flow patterns,” Advances in geophysics, Vol. 18, Part B, 1975, pp. 299-315.
    [21] Perry, A., Chong, M., and Lim, T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
    [22] Steiner, T., and Perry, A., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987. pp. 271-298.
    [23] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, No. 1, 1978, pp. 179-200.

    無法下載圖示 全文公開日期 2025/06/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE