簡易檢索 / 詳目顯示

研究生: YOUSEF ADEL MAHMOUD
YOUSEF ADEL MAHMOUD
論文名稱: 前傾噴流在橫風環境中之流場與擴散特性
Flow and Dispersion Characteristics of a Forward-Inclined Stack-Issued Jet in Crossflow
指導教授: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
口試委員: 趙振綱
Chen-Kang Chao
孫珍理
Chen-Li Sun
牛仰堯
Yang-Yao Niu
林怡均
Yi-Jiun Lin
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: Main body - 114 Pages
中文關鍵詞: Jet in crossflowJet-fluid dispersionShear-layer vorticesFlow structure
外文關鍵詞: Jet in crossflow, Jet-fluid dispersion, Shear-layer vortices, Flow structure
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針對前傾噴流在橫風環境中,在不同的傾斜角及噴流對應橫風動量通量比時,在開放式的風洞中透過實驗方法研究流場與擴散特性。使用雷射輔助煙霧流場可視化的技術觀察短時間與長時間曝光流場;利用高速數據擷取系統將熱線風速儀在噴流剪流層上的瞬時速度數位化,並藉由快速傅利葉轉換技術計算剪流層渦漩結構的頻率特性、時間尺度與長度尺寸;應用二位元邊緣偵測技術於長時間曝光的流場照片,量測噴流擴散寬度與穿透高度;使用追縱氣體濃度檢測方法偵測噴流橫向擴散分佈及噴流軌跡;藉由質點影像速度儀量化不同流場特徵之橫風噴流。噴流迎風側剪流層的渦流結構呈現四個特徵流動模式:高衝擊橫風主導模態、高衝擊噴流主導模態、低衝擊橫風主導模態及低衝擊噴流主導模態。在橫流主導模態中,增加傾斜角消除迎風側剪流層的渦漩,而在噴流主導模態中,增加傾斜角則強化傾風側剪流層渦漩。在所有模態下,固定噴流對應橫風動量通量比,當傾斜角增加時,使得近管口區的噴流穿透高度增加,遠離噴流管口處的噴流穿透高度及擴散寬度皆增加。在接近管口區,高衝擊橫風主導模態的擴散寬度比低衝擊橫風主導模態大。在噴流主導模態,較高的傾斜角導致較大的噴流擴散寬度。橫風噴流在低衝擊噴流主導模態形成最佳的噴流擴散。


    The flow and dispersion characteristics of a forward-inclined stack-issued jet in crossflow at various inclination angles (θ) and jet-to-crossflow momentum flux ratios (R) were experimentally studied in an open-loop wind tunnel. Short- and long-exposure flow patterns were examined using the laser-assisted smoke flow visualization technique. The instantaneous velocities of the upwind-side shear-layer were digitized by a hot-wire anemometer using a high-speed data acquisition system. The instability frequencies in the upwind-side shear-layer vortices were obtained by the fast Fourier transform method. The time scales and length scales of the upwind-side coherent flow structures and turbulent eddies were investigated. The binary edge-detection technique was applied to the long-exposure flow images to obtain the jet spread width and penetration height. Transverse distributions of jet dispersion and jet trajectories of jet in crossflow were determined using the tracer-gas concentration detection method. Time-averaged velocity fields of the forward-inclined stack-issued jet in crossflow at various characteristic flow modes were quantified by using PIV method. The upwind-side shear-layer vortices revealed four characteristic flow modes: high impingement-crossflow dominated mode, high impingement-jet flow dominated mode, low impingement-crossflow dominated mode, and low impingement-jet flow dominated mode. Increasing θ in the crossflow dominated regime eliminates the upwind-side shear-layer vortices, while increasing θ in the jet flow dominated regime emphasizes the upwind-side shear-layer vortices. As θ increases at a fixed R, the jet penetration height in both near- and far-field increases for all flow modes. Increasing θ at a fixed R increases jet spread width in the far field for all flow modes. In the near field, the jet spread width in the high impingement-crossflow dominated regime is larger than that in the low impingement-crossflow dominated regime. In the jet flow dominated regimes, higher θ values leads to greater jet spread width. The forward-inclined stack-issued jet in crossflow in low impingement-jet flow dominated regime reveals the best dispersion of the jet fluids.

    CONTENTS 摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii CONTENTS iv NOMENCLATURE vi TABLE CAPTIONS viii FIGURE CAPTIONS ix CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 2 1.3 Scope of present work 5 CHAPTER 2 Experimental Apparatus and Methods 7 2.1 Experimental apparatus 7 2.1.1 Wind tunnel 7 2.1.2 Jet flow supply system 8 2.1.3 Smoke flow generator 10 2.2 Experimental methods and instruments 12 2.2.1 Flow visualization 12 2.2.2 Edge detection technique 14 2.2.3 Shear-layer instabilities detection 15 2.2.4 Tracer-gas concentration detection 15 2.2.5 PIV technique evaluation 16 2.2.6 Uncertainties evaluation 17 CHAPTER 3 Flow Visualization 18 3.1 Instantaneous flow patterns 18 3.2 Regimes of characteristic flow modes 22 3.3 Time-averaged flow patterns 23 CHAPTER 4 Upwind-side shear-layer vortices characteristics 29 4.1 Time series and power spectrum density function of upwind-side vortices 29 4.2 Frequency and Strouhal number of upwind-side vortices 31 4.3 Autocorrelation coefficient of upwind-side vortices 32 CHAPTER 5 Dispersion of jet fluids 35 5.1 Concentration distribution 35 5.2 Concentration dispersion index 41 5.3 Concentration trajectories 42 CHAPTER 6 Time-averaged Flow Field Characteristics 44 6.1 Time-averaged velocity field 44 6.2 Turbulence characteristics 45 6.3 Vorticity contours 47 CHAPTER 7 Conclusions and Recommendations 48 7.1 Conclusions 48 7.2 Recommendations 50 REFERENCES 52

    REFERENCES

    [1] Y. Kamotani, and I. Greber, Experiments on a turbulent jet in a crossflow, AIAA J. 10 (1972) 1425-1429.
    [2] J. Andreopoulos, On the structure of jets in a crossflow, J. Fluid Mech. 157 (1985) 163-197.
    [3] S. A. Sherif, and R. H. Pletcher, Measurements of the flow and turbulence characteristics of round jets in crossflow, J. Fluids Eng. 111 (1989) 165-171.
    [4] R. M. Kelso, T. T. Lim, and A. E. Perry, An experimental study of round jets in cross-flow, J. Fluid Mech. 306 (1996) 111-144.
    [5] J. N. Blanchard, Y. Brunet, and A. Merlen, Influence of a counter rotating vortex pair on the stability of a jet in a cross flow: an experimental study by flow visualizations, Exp. Fluids. 26 (1999) 63-74.
    [6] R. J. Fawcett, A. P. S. Wheeler, L. I. He, and R. Taylor, Experimental investigation into the impact of crossflow on the coherent unsteadiness within film cooling flows, Int. J. Heat Fluid Fl. 40 (2013) 32-42.
    [7] Z. M. Moussa, J. W. Trischka, and S. Eskinazi, The near field in the mixing of a round jet with a cross-stream, J. Fluid Mech. 80 (1977) 49-80.
    [8] J. Andreopoulos, Wind tunnel experiments on cooling tower plumes, Part I: In uniform cross flow, J. Heat Transfer. 111 (1989) 941-948.
    [9] J. Andreopoulos, Wind tunnel experiments on cooling tower plumes, Part II: In non-uniform cross flow of boundary layer type, J. Heat Transfer. 111 (1989) 949-955.
    [10] O. S. Eiff, J. G. Kawall, and J. F. Keffer, Lock-in of vortices in the wake of an elevated round turbulent jet in a crosswind, Exp. Fluids. 19 (1995) 203-213.
    [11] O. S. Eiff, and J. F. Keffer, On the structures in the near-wake region of an elevated turbulent jet in a crossflow, J. Fluid Mech. 333 (1997) 161-195.
    [12] R. F. Huang, and R. H. Hsieh, Sectional flow structures in near wake of elevated jets in a crossflow, AIAA J. 41 (2003) 1490-1499.
    [13] R. F. Huang, and J. Lan, Characteristic modes and evolution processes of shear-layer vortices in an elevated transverse jet, Phys. Fluids. 17 (2005) 1-13.
    [14] L. Cortelezzi, and A.R. Karagozian, On the formation of the counter-rotating vortex pair in transverse jets, J. Fluid Mech. 446 (2001) 347-373.
    [15] R. Fearn, and R. Weston, Vorticity associated with a jet in a cross flow, AIAA J. 12 (1974) 1666-1671.
    [16] J. Andreopoulos, and W. Rodi, Experimental investigation of jets in a crossflow, J. Fluid Mech. 138 (1984) 93-127.
    [17] E. J. Gutmark, and I. M. Ibrahim, Dynamics of single and twin circular jets in cross flow, Exp. Fluids. 50 (2011) 653-663.
    [18] L. K. Su, and M. G. Mungal, Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets, J. Fluid Mech. 513 (2004) 1-45.
    [19] H. Johari, M. Pacheco-Tougas, and J. C. Hermanson, Penetration and mixing of fully modulated turbulent jets in crossflow, AIAA J. 37 (1999) 842-850.
    [20] A. Eroglu, and R. E. Breidenthal, Structure, Penetration, and mixing of pulsed jets in crossflow, AIAA J. 39 (2001) 417-423.
    [21] H. Johari, Scaling of Fully Pulsed Jets in Crossflow, AIAA J. 44 (2006) 2719-2725.
    [22] S. R. Shapiro, J. M. King, R. T. M’Closkey, and A. R. Karagozian, Optimization of controlled jets in crossflow, AIAA J. 44 (2006) 1292-1298.
    [23] S. Megerian, J. Davitian, L.d.B. Alves, A. Karagozian, Transverse-jet shear-layer instabilities. Part 1 Experimental studies, J. Fluid Mech. 593 (2007) 93-129.
    [24] R. F. Huang, and C. M. Hsu, Flow and mixing characteristics of an elevated pulsating transverse jet, Phys. Fluids. 24 (2012) 015104.
    [25] R. F. Huang, and C. M. Hsu, Turbulent flows of an acoustically excited elevated transverse jet, AIAA J. 50 (2012) 1964-1978.
    [26] M. Yaras, Measurements of surface-roughness effects on the development of a vortex produced by an inclined jet in cross-flow, J. Fluids Eng. 126 (2004) 346-354.
    [27] W. Jessen, W. Schröder, and M. Klaas, Evolution of jets effusing from inclined holes into crossflow, Int. J. Heat Fluid Flow. 28 (2007) 1312-1326.
    [28] L. M. Wright, S. T. McClain, and M. D. Clemenson, Effect of freestream turbulence intensity on film cooling jet structure and surface effectiveness using PIV and PSP, J. Turbomach. 133 (2011) 041023-1-041023-12.
    [29] X. Wen, Y. Liu, and H. Tang, Near-field interaction of an inclined jet with a crossflow: LIF visualization and TR-PIV measurement, J. Visual. 21 (2018) 19-38.
    [30] D. Han, V. Orozco, and M. G. Mungal, Gross-entrainment behavior of turbulent jets injected obliquely into a uniform crossflow, AIAA J. 38 (2000) 1643-1649.
    [31] M. G. Khouygani, R. F. Huang, and C. M. Hsu, Flow characteristics in median plane of a backward-inclined elevated transverse jet, Exp. Therm. Fluid Sci. 62 (2015) 164-174.
    [32] Y. A. Altaharwah, R. F. Huang, and C. M. Hsu, Flow and mixing characteristics of a forward-inclined stack-issued jet in crossflow, Int. J. Heat Fluid Fl. 82 (2020) 108549.
    [33] R. C. Flagan, and J. H. Seinfeld, Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988. pp. 290-357.
    [34] R. Mei, Velocity Fidelity of Flow Tracer Particles, Exp. Fluids. 22 (1996) 1-13.
    [35] L. G. Shapiro, and G. C. Stockman, Computer Vision, Prentice-Hall, Upper Saddle River, New Jersey, USA, 2001.
    [36] W. G. Steele, R. P. Taylor, R. E. Burrell, and H. W. Coleman, Use of Previous Experience to Estimate Precision Uncertainty of Small Sample Experiments, AIAA J. 31 (1993) 1891-1896.
    [37] C. D. McGillem, and G. R. Cooper, Continuous and Discrete Signal and System Analysis, New York: Holt, Rinehart and Winston, 1984.
    [38] A. J. Yule, Large-scale structure in the mixing layer of a round jet, J. Fluid Mech. 89 (1978) 413-432.
    [39] S. C. Crow, and F. H. Champagne, Orderly structure in jet turbulence, J. Fluid Mech. 48 (1971) 547-591.
    [40] H. Tennekes, and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA, 1972, pp. 248-261.
    [41] S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
    [42] R. F. Huang, and C. L. Lin, Flow characteristics and shear-layer vortex shedding of double concentric jets, AIAA J. 35 (1997) 887-892.
    [43] R. F. Huang, and H. W. Lee, Turbulence effect on frequency characteristics of unsteady motions in wake of wing, AIAA J. 38 (2000) 87-94.
    [44] Zaman, K. B. M. Q. and Hussain, A. K. M. F., Taylor hypothesis and large-scale coherent structures, J. Fluid Mech. 112 (1981) 379-396.

    無法下載圖示 全文公開日期 2025/04/28 (校內網路)
    全文公開日期 2025/04/28 (校外網路)
    全文公開日期 2025/04/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE