簡易檢索 / 詳目顯示

研究生: 許仁瑋
Jen-Wei Hsu
論文名稱: 噴流衝擊平板在橫風中之流場特徵與氣動力性能及熱傳特性
The Flow Characteristics, Aerodynamic Performances and Heat Transfer Properties of Jet Impingement in Crossflow
指導教授: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
口試委員: 黃榮芳
Rong-Fung Huang
許清閔
Ching-Min Hsu
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 150
中文關鍵詞: 衝擊噴流橫風熱傳性能壓力量測
外文關鍵詞: impinging jet, crossflow, heat transfer performance, pressure measurement
相關次數: 點閱:187下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方法探討噴流於橫風中衝擊平板的壓力分佈及熱傳特性。,於一自製的閉迴路風洞測試段中沿軸向裝設一平板作為噴流衝擊對象;架設一支與平板及橫風垂直不鏽鋼管提供空氣噴流,噴流管出口與平板相距50 mm。噴流管內徑與外徑各為5 mm與6.4 mm。在不同噴流雷諾數Rej (1000、1333、1700)及噴流-橫風速度比Ru (1.2、1.8、2.4、3、3.6、4、4.2、4.8、5、5.4、6、9、12、15、18、21)之下進行實驗。結果顯示,在噴流雷諾數與噴流-橫風速度比介於實驗範圍內時,流場大致可歸納出四種特徵模態。分別為:無衝擊模態、輕微衝擊模態、單渦漩模態及噴流衝擊模態。無衝擊模態時,噴流並未衝擊平板且壓力分布呈現往下游遞減的趨勢;平板熱傳主要受橫風影響,速度比越小熱傳效果越佳,且同速度比時越往下游熱傳效果越差,為溫度邊界層成長所致。輕微衝擊模態時,噴流輕觸平板,壓力分布多為負值,壓力係數於噴流輕觸點附近呈微幅上揚的趨勢;平板熱傳效果於此模態最差,於噴流輕觸點附近觀測到溫度些微降低趨勢。單渦漩模態時,在衝擊點上游觀測到一顆快速旋轉之小渦漩,壓力分佈除了可觀察到因噴流衝擊所造成的峰值外,也可觀察到因小渦漩所產生的負壓;平板散熱效果於此模態隨著速度比增大而明顯增強,熱傳效果最佳處隨速度比提升而移往上游。噴流衝擊模態時,於衝擊點上游觀測到一顆大渦漩,壓力分布在原點附近顯現一個峰值,大渦漩結構範圍內呈現些微負壓;散熱效果最佳處多集中在原點附近,溫度分布以該處為圓心呈現同心圓往外遞增趨勢。若欲使用衝擊噴流進行平板表面散熱,但有橫風影響時,應使噴流-橫風速度比達到噴流衝擊模態,方能獲得較佳熱傳效果。


    Impinging jet was conventionally used to enhance heat dissipation performance of a heated surface. In many cases, the impinging jet was easily subjected to the influences of crossflow so that the heat dissipation performance was decreased drastically. The present study investigated the effects of crossflow on the flow characteristics, heat transfer performance, and pressure distribution of a vertical jet impinging on a flat surface. The experiments were conducted in a close-loop wind tunnel by installing a flat plate parallel to the wind direction and a tube vertical to the flat plate. The crossflow was provided by the wind in the test section, while the impinging jet was supplied by the air issuing from the tube tip. The distance between the plate surface and the jet exit was fixed at 50 mm. The physical parameters dominating the flow were jet Reynolds number and jet-to-crossflow velocity ratio. By varying the jet Reynolds number and jet-to-crossflow velocity ratio, the flow patterns in the symmetric plane, pressure distributions on the center line of the flat plate, and the heat transfer characteristics of the flat plate surface were obtained by flow visualization, pressure measurement, and temperature measurement, respectively. Four characteristic flow modes (no impingement, slight impingement, single vortex, and impingement) were observed in the domain of jet Reynolds number and jet-to-crossflow velocity ratio. The pressure distribution profiles of the impingement mode all exhibited a single-peak pattern, demonstrating the strong effect induced by the dynamic pressure asserted by the jet on the flat plate surface. The measured temperature distributions indicated that the impinging jet would present the highest heat transfer performance when the flow pattern exhibited the impingement mode.

    摘要 Abstract 致謝 目錄 符號索引 圖表索引 第一章 緒論 1.1研究背景 1.2 研究動機 1.3文獻回顧 1.4研究目標 第二章 實驗設備與研究方法 2.1 實驗設計 2.2 實驗設備 2.2.1 風洞 2.2.2 噴管與其供氣設備 2.2.3 邊界層控制板 2.3 實驗方法 2.3.1 可視化 2.3.2 壓力量測 2.3.3 溫度量測 第三章 噴流衝擊平板之流場特徵 3.1 噴流衝擊平板之流場模態 3.2 噴流衝擊平板之垂直面流場特徵 3.3 噴流衝擊平板之水平面流場特徵 第四章 噴流衝擊平板之氣動力性能 4.1 壓力的本質 4.2 噴流衝擊平板之壓力收斂曲線 4.3 噴流衝擊平板之壓力係數分布 4.4 噴流衝擊平板壓力係數分布比較 第五章 噴流衝擊平板之熱傳特性 5.1. 熱傳物理學 5.2 自然對流之熱傳特性 5.3 噴流衝擊平板中心線之溫度、熱對流係數及紐賽爾數分佈 5.4 噴流衝擊平板之熱傳特性比較 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    Çengel, Y. A., Boles, M. A., & Kanoğlu, M. (2011). Thermodynamics: an engineering approach. New York: McGraw-hill.
    Çengel, Y.A. & Ghajar, A. J. (2020). Heat and Mass Transfer: Fundamentals and Applications. 6th edition. McGraw-Hill Education.
    Fox, R. W., McDonald, A. T., & Mitchell, J. W. (2020). Fox and McDonald's introduction to fluid mechanics. 10th Edition. John Wiley & Sons.
    Larson, R., & Edwards, B. H. (2010). Calculus: Early transcendental functions. Cengage Learning.
    Munson, B., Young, D. & Okiishi, T. (2012). Fundamentals of Fluid Mechanics. 7th Edition. John Wiley & Sons.
    Newton, I. (1999). The Principia: mathematical principles of natural philosophy. Univ of California Press.
    Pope, S. (2000). Turbulent Flows. Cambridge University Press.
    Schlichting, H. (1979). Boundary-Layer Theory. Springer.
    Shames, I.H. (1962). Mechanics of Fluids. McGraw-Hill.
    Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence. MIT press.
    黃榮芳,許清閔,林楷玲(2022)。工業通風-原理與實務(第三版)。中華環保安全衛生協會,台北,2022
    郭涵妮(2019)。衝擊噴流受橫流影響的流場特性。國立臺灣科技大學機械工程研究所論文,台北,2019
    莊博閔(2020)。斜向衝擊噴流受橫流影響的流場特性。國立臺灣科技大學機械工程研究所論文,台北,2020
    張立衡(2021)。前傾衝擊噴流在橫風中之流場特徵。國立臺灣科技大學機械工程研究所論文,台北,2021
    黃駿偉(2022)。衝擊噴流在橫風中之流場特徵。國立臺灣科技大學機械工程研究所論文,台北,2022

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2035/08/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE