簡易檢索 / 詳目顯示

研究生: 劉政言
Cheng-Yen Liu
論文名稱: 基於智慧型手機量測層間位移之建築震後損傷評估研究
Post-Earthquake Estimation of Building Damage State Using Interstory Drift Measured by Smartphones
指導教授: 許丁友
Ting-Yu Hsu
謝佑明
Yo-Ming Hsieh
口試委員: 鍾立來
Lap-Loi Chung
柴駿甫
Juin-Fu Chai
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 118
中文關鍵詞: 智慧型手機藍牙微定位Wi-Fi直連時間同步層間位移結構損傷評估
外文關鍵詞: smartphones, beacon micro-location, Wi-Fi direct, time synchronization, interstory drift ratio, damage detection of buildings
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於開發一套基於智慧型手機之建築震後即時損傷評估系統。透過建築物內之智慧型手機量測加速度反應,於觸發後數秒內立即判斷是否發生地震事件,若為地震事件則擷取振動訊號,事件結束後透過藍牙微定位(Beacon Micro-Location)技術,知曉手機在建築物較精確之樓層位置以及所在建物之相關參數,再透過Wi-Fi直連(Wi-Fi Direct)技術,與鄰近但不同樓層的手機交換量測之振動訊號與手機方向,據以解算樓層之間的層間位移,最後將最大層間位移比(Interstory Drift Ratio, IDR)與該建築物容許之門檻值進行比較,以決定該建築物可能的震損程度。
    然而,手機內電子羅盤所量測之手機方向,容易受環境影響而不準確,以及各手機內置時鐘並不一致。本研究提出利用訊號處裡技術,將手機彼此方向對齊(Orientation Alignment),並透過手機彼此網路時間校時(Network Time Protocol, NTP)達到時間同步,以降低計算層間位移的誤差。由數值模擬結果表明,若手機彼此無時間延遲,且為較近期(2019後)上市之手機,其角度誤差應可小於10度內、角度之均方根誤差(Root Mean Square Error, RMSE)小於1.25度。最後,本研究利用鋼結構試體之振動台試驗,驗證所提之方法。由試驗結果表明,角度RMSE為4.26度、層間位移比RMSE為0.091%、判別結構損傷之準確率達92.0%,因此利用智慧型手機進行震後建築損傷評估應有其可行性。


    This study dedicated to developing a system of damage immediate detection of post-earthquake buildings by smartphones. The scenario is that the smartphones measured the acceleration in the buildings, once the smartphones were triggered by an excitation, an embedded artificial neural network (ANN) model would classify whether the event was earthquake or not within a few seconds. If the triggered motion was considered an earthquake event, then smartphones will record the whole vibration history of this event. After the earthquake event finished, the smartphones used beacon micro-location technique to collect the location of the smartphones in the buildings more precisely and the relevant building information. Furthermore, the smartphones exchanged the vibration data and the phone orientation with the smartphones on adjacent floors by Wi-Fi direct. Using the exchanged data, the smartphones could calculate interstory drifts in each floor. By comparing the maximum interstory drift ratio (IDR) to the allowable threshold, the possible damage level of buildings during the earthquake could be estimated.
    However, due to ambient interference (e.g., magnetic field of adjacent electronics), the orientation of the smartphones measured by compass inside isn’t reliable. In addition, each smartphone’s clock drifts with time. Therefore, this study attempted to reduce the errors of the calculated interstory drift by employing signal process techniques and network time protocol (NTP) techniques to correct the orientations and to synchronize the clocks, respectively. Numerical simulation showed that the error of orientation less than 10 degree and the root mean square (RMSE) of orientation is 1.25 degree, if the smartphones are the more recent version, and assuming no time delay. Shaking table tests of a four-story steel building were conducted to verify the proposed methods. The testing results showed that the RMSE of orientation is 4.26 degree, the RMSE of IDR is 0.091% and the accuracy of damage detection of the building is 92.0%. Therefore, the proposed approach is quite feasible.

    摘要 I ABSTRACT II 目錄 III 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 層間位移與其量測方式 2 1.2.2 智慧型手機應用於結構領域 3 1.3 研究內容與架構 5 1.4 工作分配 6 第二章 研究方法與應用之技術 7 2.1 EQ-Alert 7 2.1.1 觸發機制 8 2.1.2 辨別地震 9 2.2 藍牙微定位技術 11 2.3 Wi-Fi直連技術 11 2.4 時間同步技術 12 2.5 電子羅盤 13 2.6 量測訊號處理 13 2.6.1 加速度訊號雙重積分 13 2.6.2 濾波器設置 14 2.7 結構層間位移之損傷評估 14 2.8 快速傅立葉轉換 17 第三章 智慧型手機調查 18 3.1 智慧型手機選擇 18 3.2 感測器品質調查 19 3.2.1 時間域分析 20 3.2.2 頻率域分析 21 3.2.3 品質檢測機制 23 3.3 電子羅盤測試 24 3.4 時間同步測試 25 第四章 方向對齊技術開發 27 4.1 Etabs動力歷時分析 27 4.2 結構反應之頻率域觀察 30 4.3 最小頻譜差異法 34 4.3.1 演算法 34 4.3.2 數值模擬方式與評估指標 36 4.3.3 最小頻譜差異法:第一型與第二型比較 39 4.3.4 位移頻譜法與加速度頻譜法比較 41 4.4 位移頻譜差異法:第二型之深入探討 42 4.4.1 最低掃描間隔探討 43 4.4.2 不同有限元素模型之結果比較 44 4.4.3 不同樓層之結果比較 47 4.4.4 不同地震之結果比較 48 4.4.5 雜訊與解析度影響探討 49 第五章 鋼結構構架之試驗驗證 52 5.1 試驗設計與規劃 52 5.1.1 試體描述與地震力配置 52 5.1.2 試驗儀器與配置 54 5.1.3 試驗APP運作流程 57 5.2 白雜訊測試 59 5.3 即時試驗分析與結果 62 5.3.1 遺漏事件探討 62 5.3.2 試驗結果之誤差來源 64 5.3.3 結構損傷之即時結果與比較 64 5.3.4 試驗APP之運算效率 67 5.4 離線試驗分析與結果 68 5.4.1 原因與方法調整 68 5.4.2 結構損傷之離線結果與比較 69 第六章 結論與建議 73 6.1 結論 73 6.2 建議 74 6.3 未來工作 74 6.4 研究限制 76 參考文獻 77 附表 79 附圖 84

    [1] Hoskere, V., Narazaki, Y., Hoang, T. A., and Spencer Jr, B. F. (2018). “Towards Automated Post-Earthquake Inspections with Deep Learning-Based Condition-Aware Models.” The 7th World Conference on Structural Control and Monitoring.
    [2] FEMA. (2013). “HAZUS-MH 2.1 Earthquake Model Technical Manual.” Department of Homeland Security: Washington, DC, USA.
    [3] Park, J. W., Sim, S. H., Jung, H. J. and Spencer Jr, B. F. (2013). “Development of a Wireless Displacement Measurement System Using Acceleration Responses.” Sensors 13, 8377-92.
    [4] Trapani, D., Maroni, A., Debiasi, E. and Zonta, D. (2015). “In Uncertainty Evaluation of After-Earthquake Damage Detection Strategy.” 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy. pp 125-130.
    [5] Ozer, E., M. Feng, and D. Feng. (2015). “Citizen Sensors for SHM: Towards a Crowdsourcing Platform.” Sensors 15: p. 14591-14614.
    [6] Kong, Q., et al. (2018). “Structural Health Monitoring of Buildings Using Smartphone Sensors.” Seismological Research Letters, 89.
    [7] Han, R., et al. (2016). “A Cyber-Physical System for Girder Hoisting Monitoring Based on Smartphones.” Sensors 16: p. 1048.
    [8] Ozer, E., D. Feng, and M.Q. Feng. (2017). “Hybrid Motion Sensing and Experimental Modal Analysis Using Collocated Smartphone Camera and Accelerometers.” Measurement Science and Technology, 28(10): p. 105903.
    [9] Yu, Y., et al. (2015). “Initial Validation of Mobile-Structural Health Monitoring Method Using Smartphones.” International Journal of Distributed Sensor Networks, 11(2): p. 274391.
    [10] Xie, B., J. Li, and X. Zhao. (2019). “Research on Damage Detection of a 3D Steel Frame Model Using Smartphones.” Sensors, 19: p. 745.
    [11] Feng, M., et al. (2015). “Citizen Sensors for SHM: Use of Accelerometer Data from Smartphones.” Sensors (Basel), 15(2): p. 2980-98.
    [12] Matarazzo, T.J., et al. (2018). “Crowdsensing Framework for Monitoring Bridge Vibrations Using Moving Smartphones.” Proceedings of the IEEE, 106(4): p. 577-593.
    [13] Kong, Q., et al. (2018). “Machine Learning Aspects of the MyShake Global Smartphone Seismic Network.” Seismological Research Letters, 90(2A): p. 546-552.
    [14] Rochford, K., Kong, Q., et al. (2018). “MyShake: Using Human-Centered Design Methods to Promote Engagement in a Smartphone-Based Global Seismic Network.” Frontiers in Earth Science, 6: p. 237.
    [15] Kong, Q., et al. (2018). “Machine Learning in Seismology: Turning Data into Insights.” Seismological Research Letters, 90(1): p. 3-14.
    [16] Hsu, T.Y. and Nieh, C.P. (2020). “On-Site Earthquake Early Warning Using Smartphones.” Sensors (Basel), 20(10).
    [17] 聶君平。(2019)。「現地型強震預警APP: My Shake Alert」。碩士論文,營建工程系,國立臺灣科技大學。
    [18] Kos A, Tomažič S, Umek A. (2016). “Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications.” Sensors (Basel, Switzerland). 16(4):477.
    [19] Narito Kurata. (2017). “An Autonomous Time Synchronization Sensor Device Using a Chip Scale Atomic Clock for Earthquake Observation and Structural Health Monitoring.” The 8th International Conference on Sensor Device Technologies and Applications.
    [20] 蔡錴銘,李昭賢,張家銘。(2017)。「試體設計報告」。土木工程學系,國立臺灣大學。
    [21] 郭相如。(2019)。「克服旋轉並融合加速度訊號之智慧型單監視器層間相對位移量測技術研發」。碩士論文,營建工程系,國立臺灣科技大學。

    無法下載圖示 全文公開日期 2025/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE