簡易檢索 / 詳目顯示

研究生: Sintayehu Assefa Ambo
Sintayehu Assefa Ambo
論文名稱: Building sustainability assessment system: multi-certification integration model and new assessment system for least developed countries
Building sustainability assessment system: multi-certification integration model and new assessment system for least developed countries
指導教授: 李欣運
Hsin-Yun Lee
口試委員: 曾仁杰
Ren-Jye Dzeng
王維志
Wei-Chih Wang
鄭明淵
Min-Yuan Cheng
楊亦東
I-Tung Yang
林祐正
Lin Youzheng
李欣運
Hsin-Yun Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 171
中文關鍵詞: 綠色建築評級工具整合模式最低度開發國家多重認證可持續性
外文關鍵詞: Sustainable building rating tools, Integration model, Least developed countries, Multi-certification, Sustainability
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

當今,可持續性是興建基礎設施的基本考慮因素,意在不損害後代的情況下滿足現在的需求。雖然現今有發展許多建築可持續性評估系統(Building Sustainability Assessment Systems, BSAS)和綠色認證評估系統,但經研究和報告顯示,這些系統都擁有一些不完備的地方。為了應對現有系統的挑戰,並將最低度開發國家(Least developed country, LDCs)的建築也納入可持續性當中,因此利用國際標準化組織(International Standardization Organization, ISO)制定的建築要求,使用七種眾所皆知的評級工具分析內容。結果顯示所評估的國際體系中,有七個系統顯示ISO可持續建築指標方面存在不足地方,所以此研究提出了一個整合模式,可以從ISO可持續建築標準的角度來增強可持續性。此研究開發的模型使用多個經過認證的建築案例進行驗證,並且該模型的性能優於現有制度。由於LDCs的建築施工技術與其他發達國家不同,因此進行了深入的文獻回顧,以確定所選研究領域為新的屬性。現有的綠色建築評估系統(Sustainable building rating systems, SBRSs)、以往相關研究與衣索比亞建築行業的國家技術路線圖(National technology roadmap for the building construction sector, NTRM-BCS)皆主要用於屬性之選擇,而ISO可持續建築指標和2030年可持續發展目標(SDG2030)被用作屬性選擇期間之基準,以此實現可持續發展目標,並將經確認的屬性交給專業人員,納入他們的意見。與以往研究不同,此方法的屬性權重是結合行業專家評估,與從七個ISO核心框架的判斷量表分析得出。通過與現有的系統以及研究範圍內新建築物案例進行研究比較,對此次開發的評估系統得到了驗證。這項研究有助於從業人員進行評級制度和作出多重認證的決定,並被用作LDCs開發新制度的基準。


An essential consideration in the construction of today's infrastructure is the principle of sustainability, or providing for the needs of the present without compromising those of future generations. Nowadays, many building sustainability assessment systems (BSAS) and certification systems evaluate green development. However, studies and reports show several challenges during the rating systems application. To propose mechanisms for existing challenges and bring LDCs into the sustainable construction approach, direct content analysis was used to evaluate seven well-known rating tools using the building requirements established by the International Standardization Organization (ISO). Seven of the evaluated international systems have lacked in fulfilling the ISO sustainable building indicators. Because the limitations of existing sustainability rating systems vary from one to another, we proposed an integration model that can enhance sustainability from the ISO sustainable building standards perspective. The developed model was validated using multi-certified case study buildings and performed better than the existing practices. Because the building construction challenges and advancement of technology in the least developed countries (LDCs) is different from the developed one, an in-depth literature review was conducted to identify new attributes for the selected study area. Existing sustainable building rating systems (SBRSs), previous studies, and the national technology roadmap for Ethiopia's building construction sector (NTRM-BCS) were mainly used for attribute selection. The ISO sustainable building indicators and sustainable development goals 2030 (SDG2030) were used as benchmarks during attribute selection to meet the sustainability goal. The identified attributes were sent to purposively selected professionals, and their feedback was incorporated. Unlike previous studies, the weight of attribution was analyzed from a combination of subjective expert rating and judgmental scale method from the seven ISO core protection areas. The developed assessment system was compared with existing systems and a case study of new buildings in the study area. This study is believed to help practitioners with rating system selection and multi-certification decisions and is used as a benchmark for LDCs in developing the new system.

Abstract (Chinese) I Abstract (English) III Acknowledgment V Table of contents VI List of symbols and abbreviations XIII List of figures X List of tables XII 1 Introduction 1 1.1 Research Motivation 2 1.2 Research aims and objectives 4 1.3 Nature and method of the research 4 1.4 Research contributions and practical implications 5 1.5 The structure of the thesis 5 2 Related literature review 8 2.1 Evolution of sustainable construction 8 2.2 Existing and popular sustainable building rating systems 9 2.3 Global and local perspective of sustainable construction 13 2.4 Challenges in building sustainability assessment systems 14 2.4.1 Scope of sustainability pillars 14 2.4.2 Performance variation 14 2.4.3 Influence of country of origin 15 2.5 Sustainable buildings based on the ISO 15 2.6 Sustainability and construction projects management 17 2.7 Previous research gaps 17 3 Integration model for multi-certification 19 3.1 Introduction 19 3.2 Research approach 20 3.2.1 Sampling and analysis method 20 3.2.2 Development of integration model 25 3.3 Content analysis summary of SBRSs using the ISO standard 27 3.4 Comparison of existing SBRSs 30 3.4.1 Comparison of Environmental aspects 31 3.4.2 Comparison of Social aspects 36 3.4.3 Comparison of Economic aspects 38 3.4.4 Indicators with a direct influence on more than one pillar 39 3.5 Evaluation of case study buildings 39 3.6 Application of integration model 41 4 Building sustainability assessment system for least developed countries: Ethiopian context 46 4.1 Introduction 46 4.2 Research approach 47 4.2.1 Formation of sustainability assessment attributes 47 4.2.2 Weighting method 52 4.2.3 Profile of participant experts 62 4.2.4 Case study buildings 64 4.3 The working mechanism of the new BSAS 66 4.3.1 Weight distribution among attributes 74 4.4 Evaluation of case study buildings 81 4.5 Weight distribution comparison with existing systems 82 4.6 Suitability of new system for local situation 86 4.7 Limitation of the work and implementation plan 88 5 Conclusion 89 5.1 Theoretical and research contributions 89 5.2 Practical implications for sustainable building construction practitioners 92 5.3 Recommendations for future research 92 References 94 Appendix A: Initially identified indicators of BSAS from desk study 114 Appendix B (Indicators of BSAS and their contribution to SDG) 118 Appendix C (Requirements and their assigned points for criteria) 121 Appendix D (Sample questionnaire) 147 Appendix E (Case study building evaluation result) 150 Appendix F (The ISO sustainable building indicators and their corresponding criteria in the new system) 153

Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244-248. doi:https://doi.org/10.1016/j.rser.2015.01.043
Adabre, M. A., & Chan, A. P. C. (2020). Towards a sustainability assessment model for affordable housing projects: the perspective of professionals in Ghana. Engineering, Construction and Architectural Management, 27(9), 2523-2551. doi:https://10.1108/ECAM-08-2019-0432
Adams, R., & Simmons, D. (1999). Ecological effects of fire fighting foams and retardants: a summary. Australian Forestry, 62(4), 307-314. doi:https://10.1080/00049158.1999.10674797
AFD. (2019). Challenges for Employment in Developing Countries. Retrieved from https://www.afd.fr/en/actualites/5-challenges-employment-developing-countries (Accessed: 15 December 2021)
Agbedahin, A. V. (2019). Sustainable development, Education for Sustainable Development, and the 2030 Agenda for Sustainable Development: Emergence, efficacy, eminence, and future. Sustainable Development, 27(4), 669-680. doi:https://doi.org/10.1002/sd.1931
Akhanova, G., Nadeem, A., Kim, J. R., & Azhar, S. (2020). A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan. Sustainable Cities and Society, 52, 101842. doi:https://doi.org/10.1016/j.scs.2019.101842
Al-Jebouri, M. F. A., Saleh, M. S., Raman, S. N., Rahmat, R. A. A. B. O. K., & Shaaban, A. K. (2017). Toward a national sustainable building assessment system in Oman: Assessment categories and their performance indicators. Sustainable Cities and Society, 31, 122-135. doi:https://doi.org/10.1016/j.scs.2017.02.014
Alemu, A. A., Yitayew, M., Azazeh, A., & Kebede, S. (2020). Utilization of personal protective equipment and associated factors among building construction workers in Addis Ababa, Ethiopia, 2019. BMC Public Health, 20(1), 794. doi:https://doi.org/10.1186/s12889-020-08889-x
Ali, H. H., & Al Nsairat, S. F. (2009). Developing a green building assessment tool for developing countries – Case of Jordan. Building and Environment, 44(5), 1053-1064. doi:https://doi.org/10.1016/j.buildenv.2008.07.015
Amasuomo, T. T., Atanda, J., & Baird, G. (2017). Development of a Building Performance Assessment and Design Tool for Residential Buildings in Nigeria. Procedia Engineering, 180, 221-230. doi:https://doi.org/10.1016/j.proeng.2017.04.181
Ameen, R. F. M., Mourshed, M., & Li, H. (2015). A critical review of environmental assessment tools for sustainable urban design. Environmental Impact Assessment Review, 55, 110-125. doi:https://doi.org/10.1016/j.eiar.2015.07.006
Aras, G., Tezcan, N., Kutlu Furtuna, O., & Hacioglu Kazak, E. (2017). Corporate sustainability measurement based on entropy weight and TOPSIS. Meditari Accountancy Research, 25(3), 391-413. doi:https://10.1108/MEDAR-11-2016-0100
Araújo, A. G., Pereira Carneiro, A. M., & Palha, R. P. (2020). Sustainable construction management: A systematic review of the literature with meta-analysis. Journal of Cleaner Production, 256, 120350. doi:https://doi.org/10.1016/j.jclepro.2020.120350
Asdrubali, F., Baldinelli, G., Bianchi, F., & Sambuco, S. (2015). A comparison between environmental sustainability rating systems LEED and ITACA for residential buildings. Building and Environment, 86, 98-108. doi:https://doi.org/10.1016/j.buildenv.2015.01.001
Asman, G. E., Kissi, E., Agyekum, K., Baiden, B. K., & Badu, E. (2019). Critical components of Environmentally Sustainable Buildings Design Practices of office buildings in Ghana. Journal of Building Engineering, 26, 100925. doi:https://doi.org/10.1016/j.jobe.2019.100925
Assylbekov, D., Nadeem, A., Hossain, M. A., Akhanova, G., & Khalfan, M. (2021). Factors Influencing Green Building Development in Kazakhstan. Buildings, 11(12), 634. doi:https://doi:10.3390/buildings11120634
Aste, N., Torre, S. D., Talamo, C., Adhikari, R. S., & Rossi, C. (2020). Innovative Models for Sustainable Development in Emerging African Countries: Springer, Cham.https://doi.org/10.1007/978-3-030-33323-2
Awadh, O. (2017). Sustainability and green building rating systems: LEED, BREEAM, GSAS and Estidama critical analysis. Journal of Building Engineering, 11, 25-29. doi:https://doi.org/10.1016/j.jobe.2017.03.010
Azhar, S., Carlton, W. A., Olsen, D., & Ahmad, I. (2011). Building information modeling for sustainable design and LEED® rating analysis. Automation in Construction, 20(2), 217-224. doi:https://doi.org/10.1016/j.autcon.2010.09.019
Baek, C., Park, S.-H., Suzuki, M., & Lee, S.-H. (2013). Life cycle carbon dioxide assessment tool for buildings in the schematic design phase. Energy and Buildings, 61, 275-287. doi:https://doi.org/10.1016/j.enbuild.2013.01.025
Baglivo, C., Congedo, P. M., & Fazio, A. (2014). Multi-criteria optimization analysis of external walls according to ITACA protocol for zero energy buildings in the mediterranean climate. Building and Environment, 82, 467-480. doi:https://doi.org/10.1016/j.buildenv.2014.09.019
Banihashemi, S., Hosseini, M. R., Golizadeh, H., & Sankaran, S. (2017). Critical success factors (CSFs) for integration of sustainability into construction project management practices in developing countries. International Journal of Project Management, 35(6), 1103-1119. doi:https://doi.org/10.1016/j.ijproman.2017.01.014
Berardi, U. (2015). Sustainability assessments of buildings, communities, and cities. In J. J. Klemeš (Ed.), Assessing and Measuring Environmental Impact and Sustainability (pp. 497-545). Oxford: Butterworth-Heinemann.https://doi.org/10.1016/B978-0-12-799968-5.00015-4
Bernardi, E., Carlucci, S., Cornaro, C., & Bohne, R. A. (2017a). An Analysis of the Most Adopted Rating Systems for Assessing the Environmental Impact of Buildings. Sustainability, 9(7), 1226. doi:https://doi:10.3390/su9071226
Bernardi, E., Carlucci, S., Cornaro, C., & Bohne, R. A. (2017b). An analysis of the most adopted rating systems for sssessing the environmental impact of buildings. Sustainability, 9(7), 1226. doi:https://doi:10.3390/su9071226
BRE. (2016). BREEAM International New Construction 2016. BRE Global Ltd. https://www.breeam.com/discover/technical-standards/newconstruction/ (Accessed: 26/02/2020)
BREEAM. (2022). Homepage of BREEAM. Retrieved from https://www.breeam.com/ (Accessed: 3 March 2022)
Brisman, A. (2011). Rio Declaration. In D. K. Chatterjee (Ed.), Encyclopedia of Global Justice (pp. 960-961). Dordrecht: Springer Netherlands.https://10.1007/978-1-4020-9160-5_648
Calabrese, A., Costa, R., Levialdi, N., & Menichini, T. (2016). A fuzzy analytic hierarchy process method to support materiality assessment in sustainability reporting. Journal of Cleaner Production, 121, 248-264. doi:https://doi.org/10.1016/j.jclepro.2015.12.005
CASBEE. (2014). CASBEE for Building (New Construction). Institute for Building Environment and Energy Conservation. http://www.ibec.or.jp/CASBEE/english/ (Accessed: 12/11/2019)
CASBEE. (2020). Homepage of CASBEE. Retrieved from http://www.ibec.or.jp/CASBEE/english/index.htm (Accessed: 27 May 2020)
Chamber of commerce. (2018). BNP Paribas in Luxembourg earns triple environmental certification at European level. Retrieved from https://www.corporatenews.lu/en/archives-shortcut/archives/article/2018/03/exceptional-hqe-excellent-breeam-and-gold-dgnb-bnp-paribas-in-luxembourg-earns-triple-environmental-certification-at-european-level?author=BGL+BNP+Paribas (Accessed: 1 May 2021)
Cheng, M.-Y., & Darsa, M. H. (2021). Construction schedule risk assessment and management strategy for foreign general contractors working in the Ethiopian construction industry. Sustainability, 13(14), 7830. doi:https://doi:10.3390/su13147830
Design Curial. (2013). Challenger building becomes world’s first to obtain triple certification. Retrieved from http://www.designcurial.com/news/challenger-building-becomes-world-s-first-to-obtain-triple-certification (Accessed: 10 June 2020)
DGNB. (2020). DGNB system new Buildings criteria set. DGNB. https://www.dgnb-system.de/en/system/version-2020-international/ (Accessed:
DGNB. (2022). Homepage of DGNB. Retrieved from https://www.dgnb.de/en/council/worldwide/ (Accessed: 4 March 2022)
Dixit, M. K., Culp, C. H., & Fernández-Solís, J. L. (2013). System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews, 21, 153-164. doi:https://doi.org/10.1016/j.rser.2012.12.037
Doan, D. T., Ghaffarianhoseini, A., Naismith, N., Zhang, T., Ghaffarianhoseini, A., & Tookey, J. (2017). A critical comparison of green building rating systems. Building and Environment, 123, 243-260. doi:https://doi.org/10.1016/j.buildenv.2017.07.007
Durdyev, S., Mohandes, S. R., Mahdiyar, A., & Ismail, S. (2021). What drives clients to purchase green building?: The cybernetic fuzzy analytic hierarchy process approach. Engineering, Construction and Architectural Management, ahead-of-print(ahead-of-print). doi:https://10.1108/ECAM-11-2020-0945
Dwaikat, L. N., & Ali, K. N. (2016). Green buildings cost premium: A review of empirical evidence. Energy and Buildings, 110, 396-403. doi:https://doi.org/10.1016/j.enbuild.2015.11.021
Dwi Putra, M. S., Andryana, S., Fauziah, & Gunaryati, A. (2018). Fuzzy Analytical hierarchy process method to determine the quality of gemstones. Advances in Fuzzy Systems, 2018, 1-6. doi:https://doi.org/10.1155/2018/9094380
EEWH. (2020). History of Green Building Labeling. Retrieved from http://twgbqanda.com/english/e_history.php?Type=1&menu=e_history_class (Accessed: 16 May 2020)
Erdogan, S. A., Šaparauskas, J., & Turskis, Z. (2019). A Multi-Criteria Decision-Making Model to Choose the Best Option for Sustainable Construction Management. Sustainability, 11(8), 2239. Retrieved from https://www.mdpi.com/2071-1050/11/8/2239
Gabay, H., Meir, I. A., Schwartz, M., & Werzberger, E. (2014). Cost-benefit analysis of green buildings: An Israeli office buildings case study. Energy and Buildings, 76, 558-564. doi:https://doi.org/10.1016/j.enbuild.2014.02.027
GBCSA. (2018). Green Star Rating Tool. Green Star South Africa. https://gbcsa.org.za/certify/green-star-sa/ (Accessed:
GBCSA. (2022). GBCSA Homepage. Retrieved from https://gbcsa.org.za/certify/green-star-sa/green-star-africa/ (Accessed: 4 March 2022)
GBIG. (2020). Explore Green Buildings. Retrieved from http://www.gbig.org/ (Accessed: 24 December 2019)
Giarma, C., Tsikaloudaki, K., & Aravantinos, D. (2017). Daylighting and Visual Comfort in Buildings’ Environmental Performance Assessment Tools: A Critical Review. Procedia Environmental Sciences, 38, 522-529. doi:https://doi.org/10.1016/j.proenv.2017.03.116
Gobbi, S., Puglisi, V., & Ciaramella, A. (2016). A Rating System for Integrating Building Performance Tools in Developing Countries. Energy Procedia, 96, 333-344. doi:https://doi.org/10.1016/j.egypro.2016.09.156
Goodhew, S. (2016). Sustainable Construction Processes (First ed.). Chichester: John Wiley and Sons ltd.https://doi.10.1002/9781119247937.ch1
Goubran, S. (2019). On the Role of Construction in Achieving the SDGs. Journal of Sustainability Research, 1(2), 52. doi:https://doi.org/10.20900/jsr20190020
Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of Cleaner Production, 98, 66-83. doi:https://doi.org/10.1016/j.jclepro.2013.06.046
Greene, T., & Jacobs, P. (2021). 2020 tied for warmest year on record, NASA analysis shows. Retrieved from https://www.nasa.gov/press-release/2020-tied-for-warmest-year-on-record-nasa-analysis-shows (Accessed: 28 October 2021)
Grzegorzewska, M., & Kirschke, P. (2021). The Impact of Certification Systems for Architectural Solutions in Green Office Buildings in the Perspective of Occupant Well-Being. Buildings, 11(12), 659. doi:https://doi:10.3390/buildings11120659
Gurara, D., Klyuev, V., Mwase, N., & Presbitero, A. F. (2018). Trends and challenges in infrastructure investment in developing countries. International Development Policy, 10(1). doi:https://doi.org/10.4000/poldev.2802
HQE. (2022). Homepage of HQE. Retrieved from https://www.behqe.com/hqe-in-the-world/list-of-projects (Accessed: 4 March 2022)
Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative Health Research, 15(9), 1277-1288. doi:https://doi.org/10.1177/1049732305276687
Huq, S., Reid, H., Konate, M., Rahman, A., Sokona, Y., & Crick, F. (2004). Mainstreaming adaptation to climate change in Least Developed Countries (LDCs). Climate Policy, 4(1), 25-43. doi:https://10.1080/14693062.2004.9685508
Ieong, N. (2019). Considering a dual certification for WELL/BREEAM? You are half way to go Retrieved from https://teraoasia.com/2019/03/08/considering-a-dual-certification-for-wellbreeam-you-are-half-way-to-go/ (Accessed: 10 May 2021)
iiSBE. (2012). SBTool. International Initiative for a Sustainable Built Environment. http://www.iisbe.org/sbmethod (Accessed: 10 August 2021)
Illankoon, I. M. C. S., Tam, V. W. Y., Le, K. N., & Shen, L. (2017). Key credit criteria among international green building rating tools. Journal of Cleaner Production, 164, 209-220. doi:https://doi.org/10.1016/j.jclepro.2017.06.206
ISO. (2011). Sustainability in building construction -Sustainability indicators. (ISO21929-1). ISO. https://www.iso.org/standard/46599.html (Accessed: 22 January 2020)
ISO. (2017). Energy performance of buildings — Overarching EPB assessment International Organization for Standardization. https://www.iso.org/standard/65601.html (Accessed:
ISO. (2019). Sustainability in buildings and civil engineering works — General principles. (ISO 15392). ISO. https://www.iso.org/obp/ui/#iso:std:iso:15392:ed-2:v1:en (Accessed:
ISO. (2022). ISO and the Sustainable Development Goals. Retrieved from https://www.iso.org/sdgs.html (Accessed: 15 September 2020)
Jakiel, P., & Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054-4061. doi:https://doi.org/10.1016/j.eswa.2014.12.039
Ke, L., Furuya, K., & Luo, S. (2021). Case comparison of typical transit-oriented-development stations in Tokyo district in the context of sustainability: Spatial visualization analysis based on FAHP and GIS. Sustainable Cities and Society, 68, 102788. doi:https://doi.org/10.1016/j.scs.2021.102788
Khan, M. A., Wang, C. C., & Lee, C. L. (2021). A Framework for Developing Green Building Rating Tools Based on Pakistan’s Local Context. Buildings, 11(5), 202. Retrieved from https://www.mdpi.com/2075-5309/11/5/202
Komeily, A., & Srinivasan, R. S. (2015). A need for balanced approach to neighborhood sustainability assessments: A critical review and analysis. Sustainable Cities and Society, 18, 32-43. doi:https://doi.org/10.1016/j.scs.2015.05.004
Krippendorff, K. H. (2013). Content Analysis: an Introduction to Its Methodology (3rd ed.). USA: SAGE Publications Inc.
Lazar, N., & Chithra, K. (2020). A comprehensive literature review on development of Building Sustainability Assessment Systems. Journal of Building Engineering, 32, 101450. doi:https://doi.org/10.1016/j.jobe.2020.101450
Lazar, N., & Chithra, K. (2021). Prioritization of sustainability dimensions and categories for residential buildings of tropical climate: A multi-criteria decision-making approach. Journal of Building Engineering, 39, 102262. doi:https://doi.org/10.1016/j.jobe.2021.102262
Lee, H.-S., & Park, E.-Y. (2020). Developing a Landscape Sustainability Assessment Model Using an Analytic Hierarchy Process in Korea. Sustainability, 12(1), 301. doi:https://doi.org/10.3390/su12010301
Lette, A., Ambelu, A., Getahun, T., & Mekonen, S. (2018). A survey of work-related injuries among building construction workers in southwestern Ethiopia. International Journal of Industrial Ergonomics, 68, 57-64. doi:https://doi.org/10.1016/j.ergon.2018.06.010
Li, L., Fan, F., Ma, L., & Tang, Z. (2016). Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model. Sustainability, 8(7), 630. doi:https://doi.org/10.3390/su8070630
Li, M., Li, G., Huang, Y., & Deng, L. (2017). Research on Investment Risk Management of Chinese Prefabricated Construction Projects Based on a System Dynamics Model. Buildings, 7(3), 83. doi:https://doi:10.3390/buildings7030083
Liang, L., Wen, B., Musa, S. N., Onn, C. C., Ramesh, S., Yan, J., & Wang, W. (2021). Rectify the performance of Green Building Rating Tool (GBRT) in sustainability: Evidence from ISO 21929-1. Journal of Cleaner Production, 278, 123378. doi:https://doi.org/10.1016/j.jclepro.2020.123378
Lim, Y. S., Xia, B., Skitmore, M., Gray, J., & Bridge, A. (2015). Education for sustainability in construction management curricula. International Journal of Construction Management, 15(4), 321-331. doi:10.1080/15623599.2015.1066569
Marjaba, G. E., & Chidiac, S. E. (2016). Sustainability and resiliency metrics for buildings – Critical review. Building and Environment, 101, 116-125. doi:https://doi.org/10.1016/j.buildenv.2016.03.002
Marlow, A. T. (2012). LEED and BREEAM move closer together. Retrieved from https://emsmastery.com/2012/07/03/leed-and-breeam-move-closer-together/ (Accessed: 10 May 2021)
Mary, Q. (2017). Illegal dumping during road construction in Ethiopia affects child mortality. Retrieved from https://phys.org/news/2017-08-illegal-dumping-road-ethiopia-affects.html (Accessed: 21 October 2021)
Mateus, R., & Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBToolPT–H. Building and Environment, 46(10), 1962-1971. doi:https://doi.org/10.1016/j.buildenv.2011.04.023
Mattoni, B., Guattari, C., Evangelisti, L., Bisegna, F., Gori, P., & Asdrubali, F. (2018). Critical review and methodological approach to evaluate the differences among international green building rating tools. Renewable and Sustainable Energy Reviews, 82, 950-960. doi:https://doi.org/10.1016/j.rser.2017.09.105
Md Saad, R., Ahmad, M. Z., Abu, M. S., & Jusoh, M. S. (2014). Hamming Distance Method with Subjective and Objective Weights for Personnel Selection. The Scientific World Journal, 2014, 10. doi:https://doi.org/10.1155/2014/865495
Meadows, D. H., Meadows, D. L., Randers, J., & Ill, W. W. B. (1972). The limits to Growth (Fifth ed.). NewYork: Universe Books. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=12&cad=rja&uact=8&ved=2ahUKEwjPo-PI4K_pAhUvG6YKHWAqASQQFjALegQIChAB&url=http%3A%2F%2Fwww.donellameadows.org%2Fwp-content%2Fuserfiles%2FLimits-to-Growth-digital-scan-version.pdf&usg=AOvVaw3S5gJGZTgx918iTjWOnUjW
Mengistu, D. G., & Mahesh, G. (2020). Dimensions for improvement of construction management practice in Ethiopian construction industry. Journal of Engineering, Design and Technology, 18(1), 21-39. doi:https://doi.org/10.1108/JEDT-10-2018-0175
MoST. (2017). National Technology Road Map to Building Construction. Addis Ababa: Ethiopian Minstry of Science and Technology
Nikyema, G. A., & Blouin, V. Y. (2020). Barriers to the adoption of green building materials and technologies in developing countries: The case of Burkina Faso. IOP Conference Series: Earth and Environmental Science, 410(1). doi:https://doi.10.1088/1755-1315/410/1/012079
Noorul Hassan Zardari, Kamal Ahmed, Sharif Moniruzzaman Shirazi, & Yusop, Z. B. (2015). Weighting Methods and their Effects on Multi-Criteria Decision Making Model Outcomes in Water Resources Management. Switzerland: Springer International Publishing.https://doi.org/10.1007/978-3-319-12586-2
O'Keeffe, P. (2016). The role of Ethiopia's public universities in achieving the United Nations Sustainable Development Goals. International Review of Education / Internationale Zeitschrift für Erziehungswissenschaft / Revue Internationale de l'Education, 62(6), 791-813. Retrieved from http://www.jstor.org/stable/44980066
Olakitan Atanda, J. (2019). Developing a social sustainability assessment framework. Sustainable Cities and Society, 44, 237-252. doi:https://doi.org/10.1016/j.scs.2018.09.023
Olawumi, T. O., & Chan, D. W. M. (2020). Application of generalized Choquet fuzzy integral method in the sustainability rating of green buildings based on the BSAM scheme. Sustainable Cities and Society, 61, 102147. doi:https://doi.org/10.1016/j.scs.2020.102147
Olawumi, T. O., Chan, D. W. M., Chan, A. P. C., & Wong, J. K. W. (2020). Development of a building sustainability assessment method (BSAM) for developing countries in sub-Saharan Africa. Journal of Cleaner Production, 263, 121514. doi:https://doi.org/10.1016/j.jclepro.2020.121514
Olawumi;, T. O., & CHAN, D. W. M. (2019). Building Sustainability Assessment Method (BSAM) - for Countries in sub-Saharan region. Retrieved from: https://data.mendeley.com/datasets/jvjm5h8md3/1
Pietrosemoli, L., & Rodríguez Monroy, C. (2013). The impact of sustainable construction and knowledge management on sustainability goals. A review of the Venezuelan renewable energy sector. Renewable and Sustainable Energy Reviews, 27, 683-691. doi:https://doi.org/10.1016/j.rser.2013.07.056
PLGBC. (2019). Polish Certified Green Buildings in Number. Retrieved from https://plgbc.org.pl/ (Accessed: 05 February 2020)
Poon, C. S., Yu, A. T. W., Wong, S. W., & Cheung, E. (2004). Management of construction waste in public housing projects in Hong Kong. Construction Management and Economics, 22(7), 675-689. doi:https://DOI.10.1080/0144619042000213292
Purvis, B., Mao, Y., & Robinson, D. (2019). Three pillars of sustainability: in search of conceptual origins. Sustainability Science, 14(3), 681-695. doi:https://doi.org/10.1007/s11625-018-0627-5
Rebai, S., Azaiez, M. N., & Saidane, D. (2016). A multi-attribute utility model for generating a sustainability index in the banking sector. Journal of Cleaner Production, 113, 835-849. doi:https://doi.org/10.1016/j.jclepro.2015.10.129
RHA, GGGI, BCA, & RwGBO. (2019). Rwanda green building minimum compliance system. https://gggi.org/report/rwanda-green-building-minimum-compliance-system/ (Accessed: 12 Septemeber 2021)
Roca, L. C., & Searcy, C. (2012). An analysis of indicators disclosed in corporate sustainability reports. Journal of Cleaner Production, 20(1), 103-118. doi:https://doi.org/10.1016/j.jclepro.2011.08.002
Rokooei, S. (2015). Building Information Modeling in Project Management: Necessities, Challenges and Outcomes. Procedia - Social and Behavioral Sciences, 210, 87-95. doi:https://doi.org/10.1016/j.sbspro.2015.11.332
Saaty, T. L. (1991). Some mathematical concepts of the analytic hierarchy process. Behaviormetrika, 18(29), 1-9. doi:https://doi.org/10.2333/bhmk.18.29_1
Samad;, M., & Ravikumar, S. (2017). Formwork Requirements, Types, Materials & Accessories. International Journal of Advanced Information Science and Technology, 58-61. doi:https://DOI:10.15693/ijaist/2017.v6i11.240-243
Sánchez Cordero, A., Gómez Melgar, S., & Andújar Márquez, J. M. (2020). Green Building Rating Systems and the New Framework Level(s): A Critical Review of Sustainability Certification within Europe. Energies, 13(1), 66. doi:https://doi.org/10.3390/en13010066
SAS International. (2020). Estidama Pearl Building Rating System. Retrieved from https://sasintgroup.com/info-hub/environmental-accreditation-statements/estidama-pearl-building-rating-system/ (Accessed: 15 May 2020)
Sev, A. (2011). A comparative analysis of building environmental assessment tools and suggestions for regional adaptations. Civil Engineering and Environmental Systems, 28(3), 231-245. doi:https://doi.org/10.1080/10286608.2011.588327
Shan, M., & Hwang, B.-g. (2018). Green building rating systems: Global reviews of practices and research efforts. Sustainable Cities and Society, 39, 172-180. doi:https://doi.org/10.1016/j.scs.2018.02.034
Shen, L.-y., Tam, V. W. Y., Tam, L., & Ji, Y.-b. (2010). Project feasibility study: the key to successful implementation of sustainable and socially responsible construction management practice. Journal of Cleaner Production, 18(3), 254-259. doi:https://doi.org/10.1016/j.jclepro.2009.10.014
Shi, Q., Yan, Y., Zuo, J., & Yu, T. (2016). Objective conflicts in green buildings projects: A critical analysis. Building and Environment, 96, 107-117. doi:https://doi.org/10.1016/j.buildenv.2015.11.016
Sikra, S. (2017). How does construction impact the Environment? Retrieved from https://gocontractor.com/blog/how-does-construction-impact-the-environment/ (Accessed: 6 April 2020)
Sinesilassie, E. G., Tripathi, K. K., Tabish, S. Z. S., & Jha, K. N. (2019). Modeling success factors for public construction projects with the SEM approach: engineer’s perspective. Engineering, Construction and Architectural Management, 26(10), 2410-2431. doi:https://doi.org/10.1108/ECAM-04-2018-0162
Sobhani, F. A., Amran, A., & Zainuddin, Y. (2012). Sustainability disclosure in annual reports and websites: a study of the banking industry in Bangladesh. Journal of Cleaner Production, 23(1), 75-85. doi:https://doi.org/10.1016/j.jclepro.2011.09.023
Spangenberg, J. H. (2002). Institutional sustainability indicators: An analysis of the institutions in Agenda 21 and a draft set of indicators for monitoring their effectivity. Sustainable Development, 10(2), 103-115. doi: https://doi.org/10.1002/sd.184
Suzer, O. (2019). Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria-based comparative analysis and evaluating dual-certified projects. Building and Environment, 147, 158-170. doi:https://doi.org/10.1016/j.buildenv.2018.09.001
Taffese, W. Z., & Abegaz, K. A. (2019). Embodied Energy and CO2 Emissions of Widely Used Building Materials: The Ethiopian Context. Buildings, 9(6), 136. doi:https://doi.10.3390/buildings9060136
Tollefson, J. (2019). The hard truths of climate change : by the numbers Retrieved from https://www.nature.com/immersive/d41586-019-02711-4/index.html (Accessed: 02 July 2021)
Triantaphyllou, E. (2000). Multi-criteria decision making methods (Vol. 44). Boston: Springer.https://doi.org/10.1007/978-1-4757-3157-6_2
UNCTAD. (2021). UN list of least developed countries. Retrieved from https://unctad.org/topic/least-developed-countries/list (Accessed: 02 July 2021)
USGBC. (2019). Top 10 Countries and Regions for LEED Green Building. Retrieved from https://www.usgbc.org/articles/us-green-building-council-announces-top-10-countries-and-regions-leed-green-building (Accessed: 18/05)
USGBC. (2020). LEED v4.1 Building Design and Construction. USGBC. https://www.usgbc.org/articles/leed-link-leed-v41-guides (Accessed: 12/03/2020)
USGBC. (2022). LEED Rating System. Retrieved from https://www.usgbc.org/leed (Accessed: 3 March 2022)
van Dijk, S., Tenpierik, M., & van den Dobbelsteen, A. (2014). Continuing the building's cycles: A literature review and analysis of current systems theories in comparison with the theory of Cradle to Cradle. Resources, Conservation and Recycling, 82, 21-34. doi:https://doi.org/10.1016/j.resconrec.2013.10.007
Vierra, S. (2019). Green Building Standards and Certification Systems 2020(20/05). Retrieved from https://www.wbdg.org/resources/green-building-standards-and-certification-systems
Vyas, G. S., & Jha, K. N. (2016). Identification of green building attributes for the development of an assessment tool: a case study in India. Civil Engineering and Environmental Systems, 33(4), 313-334. doi:https://10.1080/10286608.2016.1247832
Vyas, G. S., Jha, K. N., & Rajhans, N. R. (2019). Identifying and evaluating green building attributes by environment, social, and economic pillars of sustainability. Civil Engineering and Environmental Systems, 36(2-4), 133-148. doi:https://doi.org/10.1080/10286608.2019.1672164
Wallhagen, M., Glaumann, M., Eriksson, O., & Westerberg, U. (2013). Framework for Detailed Comparison of Building Environmental Assessment Tools. Buildings, 3(1), 39-60. doi:https://doi:10.3390/buildings3010039
WCED. (1987). Our common future. Oxford; New York: Oxford University Press. Retrieved from https://sustainabledevelopment.un.org/content/documents/5987our-common-future.pdf
WGBC. (2021). Our green building councils. Retrieved from https://www.worldgbc.org/our-green-building-councils (Accessed: 02 July 2021)
Wong, J. K.-W., & Kuan, K.-L. (2014). Implementing ‘BEAM Plus’ for BIM-based sustainability analysis. Automation in Construction, 44, 163-175. doi:https://doi.org/10.1016/j.autcon.2014.04.003
Wong, J. K. W., Chan, J. K. S., & Wadu, M. J. (2016). Facilitating effective green procurement in construction projects: An empirical study of the enablers. Journal of Cleaner Production, 135, 859-871. doi:https://doi.org/10.1016/j.jclepro.2016.07.001
World Commission on Environment and Development. (1987). Our common future. Oxford; New York: Oxford University Press.
Yılmaz, M., & Bakış, A. (2015). Sustainability in Construction Sector. Procedia - Social and Behavioral Sciences, 195, 2253-2262. doi:https://doi.org/10.1016/j.sbspro.2015.06.312
Zarghami, E., Azemati, H., Fatourehchi, D., & Karamloo, M. (2018). Customizing well-known sustainability assessment tools for Iranian residential buildings using Fuzzy Analytic Hierarchy Process. Building and Environment, 128, 107-128. doi:https://doi.org/10.1016/j.buildenv.2017.11.032
Zhang, X., Zhan, C., Wang, X., & Li, G. (2019). Asian green building rating tools: A comparative study on scoring methods of quantitative evaluation systems. Journal of Cleaner Production, 218, 880-895. doi:https://doi.org/10.1016/j.jclepro.2019.01.192
Zhao, X., Castka, P., & Searcy, C. (2020). ISO Standards: A Platform for Achieving Sustainable Development Goal 2. Sustainability, 12(22), 9332. doi:https://10.3390/su12229332
Zou, Y. (2019). Certifying green buildings in China: LEED vs. 3-star. Journal of Cleaner Production, 208, 880-888. doi:https://doi.org/10.1016/j.jclepro.2018.10.204

無法下載圖示 全文公開日期 2025/01/11 (校內網路)
全文公開日期 2028/01/11 (校外網路)
全文公開日期 2025/01/11 (國家圖書館:臺灣博碩士論文系統)
QR CODE