簡易檢索 / 詳目顯示

研究生: Pawat Chunhachatrachai
Pawat Chunhachatrachai
論文名稱: 隱形眼鏡AOI系統的綜合電腦視覺演算法
Comprehensive computer vision algorithm for contact lens AOI system
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 李維禎
Wei-chen Lee
劉益宏
Yi-Hung Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 67
中文關鍵詞: 隱形眼鏡缺陷檢測人工智能自動光學檢測
外文關鍵詞: Contact lens, Defect detection, Artificial intelligence, Automatic optical inspection
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隱形眼鏡作為產品發貨前的檢查很重要,因為隱形眼鏡直接接觸眼睛,隱形眼鏡上的微小表面缺陷可能會導致眼睛不適甚至傷害眼睛。隱形眼鏡上的人工檢查具有缺陷,例如不一致或未能發現主要缺陷。這就需要一種自動光學檢測系統來檢測隱形眼鏡。商用隱形眼鏡存在多種缺陷,其中一些缺陷相對難以檢測。本研究旨在創建一種基於參數的綜合計算機視覺算法,使用 YOLOv4 有效檢測隱形眼鏡中心區域和環區域的缺陷。該算法可以成功地對中心區域和環區域的刮痕、P 點、毛髮和未知物體進行缺陷檢測。該算法以 0.5 閾值置信度得分實現了 mAP 0.90 和 99% 的準確度。檢測隱形眼鏡邊緣區域或邊緣缺陷的演算法的第二部分,其中90%主要使用圖像處理技能。該算法中的主要圖像處理方法包括warp-polar、HSV控制顏色範圍、腐蝕和擴張以找出邊緣缺陷的位置,包括毛刺和裂紋。人工智能還應用於邊緣檢測功能的圓回歸和最小二乘優化等算法。邊緣預處理數據的統計數據顯示為 0.85 AP 和 99% 的準確率。本文提出的整體演算法證明了隱形眼鏡缺陷檢測對高度先進的自動光學檢測系統的價值和潛力。


    The inspection on the contact lens before shipping as products is important because the lens contacts the eye directly and small surface defects on the contact lens may cause discomfort on the eye or even injure it. Human inspection on the contact lens is inherited with drawbacks such as inconsistency or failure of finding major defects. This creates a need of an automatic optical inspection system to detect the contact lens. There are many kinds of defects existing in commercial contact lens, some of which are relatively difficult to be detected. This research aims to create a parameter-based comprehensive computer vision algorithm, using YOLOv4 for detecting defects in the center area and the ring area of the contact lens with effectiveness. The algorithm can successfully defect scratches, P-points, hairs, and unknow objects in both the center area and the ring area. The algorithm achieves mAP 0.90 and 99% accuracy with 0.5 threshold confidence score. The second part of the algorithm for detecting defects on the rim area or the edge of a contact lens, in which 90% mainly uses image processing skills. The main image processing methods in this algorithm include warp-polar, control color range by HSV, erode, and dilate to find out the locations of defects on the edge, including burrs and cracks. Artificial intelligence is also applied to the algorithm on such as circle regression and least square optimization for the edge detection function. Statistics for preprocessing data on edge shows 0.85 AP and 99% accuracy. The overall algorithm proposed in this thesis demonstrates the value and potential on the defect detection of the contact lens towards a highly advanced automatic optical inspection system.

    摘要 IV ABSTRACT V ACKNOWLEDGEMENTS VI TABLE OF CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XII CHAPTER 1 1 1 INTRODUCTION 1 1.1 Background and motivation 1 1.2 Objective 3 1.3 Scope of study 3 CHAPTER 2 4 2 LITERATURE REVIEW 4 2.1 Contact lens manufacturing 4 2.2 Quality control in optical industry 6 2.3 Survey of deep learning for defect detection and AOI system 6 2.4 Computer vision for contact lens AOI 8 CHAPTER 3 10 3 CONCEPT OF MACHINE DESIGN FOR CONTACT LENS AOI 10 3.1 Traditional contact lens AOI design machine 10 3.2 Hardware design 11 CHAPTER 4 14 4 DEEP LEANRING-BASED DEFECT DETECTION ALGORITHM ON CENTER AREA AND RING AREA 14 4.1 Introduction 14 4.2 Theory background 15 4.3 Methodology and Experiment setup 21 4.4 Result 24 4.5 Conclusion 27 CHAPTER 5 28 5 IMAGE PROCESSING-BASED DEFECT DETECTION ALGORITHM ON RIM OF CONTACTLENS 28 5.1 Introduction 28 5.2 Theory background 29 5.3 Methodology and Experiment setup 32 5.4 Result 40 5.5 Conclusion 49 CHAPTER 6 50 6 CONTACT LENS DEFECT DETECTION SYSTEM 50 6.1 Overall system 50 CHAPTER 7 52 7 CONCLUSION AND FUTURE WORK 52 7.1 Conclusion 52 7.2 Future works 53 REFERENCES 55

    REFERENCES
    [1] J. Bergin, A technical overview of the development, manufacturing, and future of contact lenses. .
    [2] C. Y. Wang, H. Y. Mark Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. Yeh, “CSPNet: A new backbone that can enhance learning capability of CNN,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2020-June, pp. 1571–1580, 2020, doi: 10.1109/CVPRW50498.2020.00203.
    [3] J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, “Using deep learning to detect defects in manufacturing: A comprehensive survey and current challenges,” Materials (Basel)., vol. 13, no. 24, pp. 1–23, 2020, doi: 10.3390/ma13245755.
    [4] D. Yang, Y. Cui, Z. Yu, and H. Yuan, “Deep Learning Based Steel Pipe Weld Defect Detection Deep Learning Based Steel Pipe Weld Defect Detection.”
    [5] P. M. Bhatt et al., “Image-Based Surface Defect Detection Using Deep Learning: A Review,” J. Comput. Inf. Sci. Eng., vol. 21, no. 4, 2021, doi: 10.1115/1.4049535.
    [6] T. Araújo, G. Aresta, A. Galdran, P. Costa, A. M. Mendonça, and A. Campilho, “Uolo - Automatic object detection and segmentation in biomedical images,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11045 LNCS, pp. 165–173, 2018, doi: 10.1007/978-3-030-00889-5_19.
    [7] C.-L. Chang, W.-H. Wu, and C.-C. Hwang, “Automatic optical inspection method for soft contact lenses,” Int. Conf. Opt. Photonic Eng. (icOPEN 2015), vol. 9524, no. July 2015, p. 952402, 2015, doi: 10.1117/12.2182366.
    [8] K. M. M. Optometry, “Manufacturing process of contact lens,” no. May, pp. 0–4, 2020.
    [9] M. Nadimpalli, “Artificial Intelligence Risks and Benefits,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 6, no. 6, pp. 2–4, 2017.
    [10] N. N.J. and A. B.K., “Role of Computer Vision in Automatic Inspection Systems,” Int. J. Comput. Appl., vol. 123, no. 13, pp. 28–31, 2015, doi: 10.5120/ijca2015905603.
    [11] C. S. A. Musgrave and F. Fang, “Contact lens materials: A materials science perspective,” Materials (Basel)., vol. 12, no. 2, pp. 1–36, 2019, doi: 10.3390/ma12020261.
    [12] A. Hegbom, “Contact lenses,” Tidsskr. Nor. Laegeforen., vol. 119, no. 11, p. 1651, 1999.
    [13] M. Rebsamen, J. M. Boucheix, and M. Fayol, “Quality control in the optical industry: From a work analysis of lens inspection to a training programme, an experimental case study,” Appl. Ergon., vol. 41, no. 1, pp. 150–160, 2010, doi: 10.1016/j.apergo.2009.07.004.
    [14] M. Chowdhury and A. W. Sadek, “Advantages and Limitations of Artificial Intelligence,” Artif. Intell. Appl. to Crit. Transp. Issues, vol. 6, no. November 2012, pp. 6–8, 2012, [Online]. Available: https://www.researchgate.net/profile/Said_Easa/publication/273576102_Design_and_construction_of_transportation_infrastructure_httponlinepubstrborgonlinepubscircularsec168pdf/links/55097a910cf26ff55f85932b.pdf#page=14.
    [15] R. Breton and É. Bossé, “The Cognitive Costs and Benefits of Automation The Benefits of the Automation,” Nato, no. May, pp. 1–12, 2003.
    [16] D. Lu and Q. Weng, “A survey of image classification methods and techniques for improving classification performance,” Int. J. Remote Sens., vol. 28, no. 5, pp. 823–870, 2007, doi: 10.1080/01431160600746456.
    [17] S. S. Nath, G. Mishra, J. Kar, S. Chakraborty, and N. Dey, “A survey of image classification methods and techniques,” 2014 Int. Conf. Control. Instrumentation, Commun. Comput. Technol. ICCICCT 2014, no. December, pp. 554–557, 2014, doi: 10.1109/ICCICCT.2014.6993023.
    [18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi: 10.1109/CVPR.2016.91.
    [19] L. Jiao et al., “A survey of deep learning-based object detection,” IEEE Access, vol. 7, no. 3, pp. 128837–128868, 2019, doi: 10.1109/ACCESS.2019.2939201.
    [20] ISO18369-1:2017, Ophthalmic optics — Contact lenses — Part 1: Vocabulary, classification system and recommendations for labelling specifications. 2017.
    [21] H. D. Lin, Y. S. P. Chiu, and S. Y. Hsu, “A visual inspection system for quality control of optical lenses,” Int. J. Phys. Sci., vol. 6, no. 11, pp. 2701–2709, 2011, doi: 10.5897/IJPS11.540.
    [22] J. Balzategui, L. Eciolaza, and D. Maestro-Watson, “Anomaly detection and automatic labeling for solar cell quality inspection based on Generative Adversarial Network,” 2021, [Online]. Available: http://arxiv.org/abs/2103.03518.
    [23] H. Lin, H. K. Dandage, K. Lin, Y. Lin, and Y. Chen, “Efficient Cell Segmentation from Electroluminescent Images of Single-Crystalline Silicon Photovoltaic Modules and Cell-Based Defect Identification Using Deep Learning with,” 2021.
    [24] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision in C++ with the OpenCV Library, 2nd ed. O’Reilly Media, Inc., 2013.
    [25] D. Atikah, “済無No Title No Title No Title,” Angewandte Chemie International Edition, 6(11), 951–952. pp. 29–39, 2017, [Online]. Available: https://www.iso.org/standard/66338.html.
    [26] G. Bradski, “The OpenCV Library,” Dr. Dobb’s J. Softw. Tools, 2000.
    [27] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.
    [28] J. Božič, D. Tabernik, and D. Skočaj, “Mixed supervision for surface-defect detection: From weakly to fully supervised learning,” Comput. Ind., vol. 129, 2021, doi: 10.1016/j.compind.2021.103459.

    無法下載圖示 全文公開日期 2026/08/17 (校內網路)
    全文公開日期 2026/08/17 (校外網路)
    全文公開日期 2026/08/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE