簡易檢索 / 詳目顯示

研究生: 游喆閎
Jhe-Hong You
論文名稱: 開發氧化鋯陶瓷複合粉末應用於半導體雷射燒結積層製造研究
Development and Preparation of Zirconia Oxide Ceramic Composite Powder for Application in Semiconductor Laser Sintering Additive Manufacturing Research
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 許啟彬
Chi-Pin Hsu
陳俊名
Chun-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 106
中文關鍵詞: 陶瓷積層製造氧化鋯黏結劑半導體雷射燒結
外文關鍵詞: Additive manufacturing, Zirconia Oxide, Binder, Semiconductor Laser Sintering
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋯材料具有高熔點、高機械強度、高化學穩定性且在高溫下能維持其結構穩定性和機械性能,目前被廣泛應用於高溫陶瓷組件、牙科與醫療領域、電子材料…等,並可藉由添加不同金屬氧化物製備成不同色澤之氧化鋯成品。本研究之氧化鋯複合粉末製備使用開合式密鍊機搭配自行開發與調配之蠟基黏結劑配方與氧化鋯粉末進行加熱混合,並在混鍊過程中藉由添加碳黑粉末將反射率從原始粉末的78.5%降至15.28%,混鍊後之氧化鋯複合粉末相較於原始粉末具有較大粒徑,並透過SEM觀察到粉末間呈現高分子拉絲狀情形。使用Sinterit Lisa SLS 3D列印機進行生胚列印成型實驗,該列印設備具備雷射能量5W,波長808nm之半導體雷射,在列印溫度90°C、列印層厚100µm、雷射能量密度0.052J/mm2參數進行列印下,可獲得最大密度3.00 g/cm3,達到95.8%之生胚理論密度值。後製程中進行溶劑脫脂與燒結處理,在溶劑脫脂,溫度50°C、脫脂時間9小時下脫脂率可達到6.79%,去除黏結劑中蠟量94%之重量;燒結實驗中,燒結溫度1600°C,持溫4小時下,體積收縮率來到47.63%;燒結後胚體密度為5.47g/cm3,達到理論值91.32%,相比最低密度值提升3.2%;維氏硬度值達到1415HV,並藉由XRD進行內部晶相分析,確保內部皆以正方晶相存在。透過本研究所開發之陶瓷複合粉末並藉由半導體雷射燒結成型,有別於選擇性雷射熔融成型可以以較低功率雷射能量、免於使用真空或是惰性環境下進行列印,其成品可保持外觀完整且生胚具有一定之強度。


    Zirconia Oxide material possess high melting point, high mechanical strength, and high chemical stability, allowing them to maintain structural stability and mechanical properties at high temperature.
    In this study, a Zirconia Oxide composite powder was prepared by self-developed wax-based binder system and Zirconia Oxide powder using an open-chain mill. During the mixing process, the reflectivity of the powder was reduced from 78.5% to 15.28% by adding carbon black powder as a coloring agent. The resulting zirconia composite powder had larger particle size compared to the original powder.
    The printing machine, Sinterit Lisa SLS 3D printer equipped with a 5W, 808nm wavelength semiconductor laser, was used for the experimental printing of green parts. Under the printing parameters of 90°C printing temperature, 100µm layer thickness, and laser energy density with 0.052 J/mm2, a maximum green part density of 3.00 g/cm3 was achieved, reaching 95.8% of the theoretical density.
    During solvent debinding at a temperature of 50°C for 9 hours, the debinding rate reached 6.79%. In the sintering experiment, at sintering temperature of 1600°C and holding time of 4 hours, the volume shrinkage was 47.63%. The density of the sintered part was 5.47 g/cm3, showing a 3.2% increase compared to the lowest density value. The Vickers hardness value reached 1415 HV.
    Through the development of ceramic composite powders in this study and utilizing selective laser sintering. The resulting products maintain their integrity and the green bodies possess a certain level of strength

    摘要 0 誌謝 2 目錄 3 圖目錄 7 表目錄 11 第一章、緒論 13 1.1前言 13 1.2研究動機 14 1.3實驗流程 15 1.4論文架構 16 第二章、文獻回顧 17 2.1材料背景 17 2.1.1氧化鋯(Zirconia Oxide, ZrO2) 17 2.1.2黏結劑 18 2.2氧化鋯材料應用 19 2.3陶瓷積層製造技術 20 2.3.1材料擠製成型技術(Material Extrusion, MEX) 20 2.3.2光聚合固化成型技術(Vat Photopolymerization) 21 2.3.3黏結劑噴塗成型技術(Binder Jetting) 23 2.3.4粉床熔融成型技術(Powder Bed Fusion) 24 2.4.脫脂技術(Debinding Process) 26 2.4.1熱脫脂(Thermal Debinding) 26 2.4.2溶劑脫脂(Solvent Debinding) 27 2.4.3觸媒脫脂(Catalytic Debinding) 28 2.5粉末燒結機制 30 2.5.1固相燒結 30 2.5.2液相燒結 31 第三章、實驗方法 32 3.1使用材料 32 3.1.1 氧化鋯粉末 32 3.1.2 黏結劑材料 34 3.1.3 添加劑-碳黑 35 3.2 材料性質測試 36 3.2.1 氧化鋯粉末粒徑分析-PSD 36 3.2.2 黏結劑熱性質分析-DSC 37 3.2.3 黏結劑熱性質分析–TGA 38 3.2.4 粉末形貌分析-SEM 39 3.3粉末製作設備及方法 40 3.3.1粉末製作設備-密煉機 40 3.3.2複合粉末製備方法 42 3.4成型實驗設備 47 3.4.1 Sinterit Lisa SLS 3D列印機 47 3.4.2 軟體操作介面 48 3.4.3 鋪粉與列印機構 49 3.4.4 雷射源與能量密度 52 3.5脫脂與燒結設備 54 3.5.1脫脂方式 54 3.5.2燒結設備 55 3.6材料機械性能測試 57 3.6.1維氏硬度試驗 57 3.6.2 X光繞射分析-XRD 58 第四章、實驗結果與討論 59 4.1複合粉末性質分析 60 4.1.1複合粉末分光光譜儀測試-Spectrophotometer 60 4.1.2 複合粉末形貌與粒徑分析 62 4.1.3複合粉末熱性質分析-TGA 65 4.1.4複合粉末熱性質分析-DSC 66 4.2成型列印測試 67 4.2.1 列印層厚探討 68 4.2.2 預熱溫度探討 73 4.2.3 綜合討論-成型狀況探討 77 4.3生胚脫脂測試 80 4.4燒結物件測試 84 4.4.1燒結曲線設計 84 4.4.2燒結後收縮分析 85 4.4.3燒結後密度變化 90 4.4.4燒結後機械性能分析 91 4.4.5燒結後顯微結構分析 94 4.5燒結實驗結論 97 4.6燒結成品結果與應用 98 第五章、結論與未來展望 100 5.1 結論 100 5.2 未來展望 100 參考資料 101

    [1] D. SYSTEMS. "DMP Flex 200." https://www.3dsystems.com/3d-printers/dmp-flex-200
    [2] R. C. GARVIE and P. S. NICHOLSON, "Phase Analysis in Zirconia Systems," Journal of the American Ceramic Society, vol. 55, no. 6, pp. 303-305, 1972, doi: https://doi.org/10.1111/j.1151-2916.1972.tb11290.x.
    [3] 邱耀弘, "色澤氧化鋯配方之研究," 博士, 機械工程研究所, 國立臺灣科技大學, 台北市, 1996. [Online]. https://hdl.handle.net/11296/5j7u83
    [4] X. Zhang, K. Zhang, L. Zhang, W. Wang, Y. Li, and R. He, "Additive manufacturing of cellular ceramic structures: From structure to structure–function integration," Materials & Design, vol. 215, p. 110470, 2022/03/01/ 2022, doi: https://doi.org/10.1016/j.matdes.2022.110470.
    [5] Z. Chen et al., "3D printing of ceramics: A review," Journal of the European Ceramic Society, vol. 39, no. 4, pp. 661-687, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.jeurceramsoc.2018.11.013.
    [6] X. Zhang, X. Wu, and J. Shi, "Additive manufacturing of zirconia ceramics: a state-of-the-art review," Journal of Materials Research and Technology, vol. 9, no. 4, pp. 9029-9048, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.jmrt.2020.05.131.
    [7] A. Hadian, M. Fricke, A. Liersch, and F. Clemens, "Material extrusion additive manufacturing of zirconia parts using powder injection molding feedstock compositions," Additive Manufacturing, vol. 57, p. 102966, 2022/09/01/ 2022, doi: https://doi.org/10.1016/j.addma.2022.102966.
    [8] J. W. Halloran, "Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization," Annual Review of Materials Research, vol. 46, no. 1, pp. 19-40, 2016, doi: 10.1146/annurev-matsci-070115-031841.
    [9] K. Shahzad, J. Deckers, J.-P. Kruth, and J. Vleugels, "Additive manufacturing of alumina parts by indirect selective laser sintering and post processing," Journal of Materials Processing Technology, vol. 213, no. 9, pp. 1484-1494, 2013/09/01/ 2013, doi: https://doi.org/10.1016/j.jmatprotec.2013.03.014.
    [10] J. Hidalgo, C. Abajo, and A. Jiménez-Morales, "Effect of a binder system on the low-pressure powder injection moulding of water-soluble zircon feedstocks," J Eur Ceram Soc, vol. 33, 2013// 2013, doi: 10.1016/j.jeurceramsoc.2013.06.027.
    [11] R. Huang et al., "Material extrusion and sintering of binder-coated zirconia: Comprehensive characterizations," Additive Manufacturing, vol. 45, p. 102073, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.addma.2021.102073.
    [12] S. Zakeri, M. Vippola, and E. Levänen, "A comprehensive review of the photopolymerization of ceramic resins used in stereolithography," Additive Manufacturing, vol. 35, p. 101177, 2020/10/01/ 2020, doi: https://doi.org/10.1016/j.addma.2020.101177.
    [13] Q. Chen, E. Juste, M. Lasgorceix, F. Petit, and A. Leriche, "Binder jetting process with ceramic powders: Influence of powder properties and printing parameters," Open Ceramics, vol. 9, p. 100218, 2022/03/01/ 2022, doi: https://doi.org/10.1016/j.oceram.2022.100218.
    [14] W. Du, X. Ren, C. Ma, and Z. Pei, "Ceramic binder jetting additive manufacturing: Particle coating for increasing powder sinterability and part strength," Materials Letters, vol. 234, pp. 327-330, 2019/01/01/ 2019, doi: https://doi.org/10.1016/j.matlet.2018.09.118.
    [15] J. A. Gonzalez, J. Mireles, Y. Lin, and R. B. Wicker, "Characterization of ceramic components fabricated using binder jetting additive manufacturing technology," Ceramics International, vol. 42, no. 9, pp. 10559-10564, 2016/07/01/ 2016, doi: https://doi.org/10.1016/j.ceramint.2016.03.079.
    [16] K. Subramanian, N. Vail, J. Barlow, and H. Marcus, "Selective laser sintering of alumina with polymer binders," Rapid Prototyping Journal, vol. 1, no. 2, pp. 24-35, 1995, doi: 10.1108/13552549510086844.
    [17] S. Ani, A. Muchtar, N. Muhamad, and J. Ghani, "Binder removal via a two-stage debinding process for ceramic injection molding parts," Ceramics International, vol. 40, pp. 2819–2824, 03/01 2014, doi: 10.1016/j.ceramint.2013.10.032.
    [18] 黃坤祥, 金屬粉末射出成形(MIM) / 黃坤祥著, 初版 ed. 新竹縣竹東鎮市: 中華民國粉末冶金協會, 2013.
    [19] H. Xie et al., "Theory and practice of rapid and safe thermal debinding in ceramic injection molding," International Journal of Applied Ceramic Technology, vol. 17, no. 3, pp. 1098-1107, 2020, doi: https://doi.org/10.1111/ijac.13349.
    [20] V. Truxová, J. Šafka, J. Sobotka, J. Macháček, and M. Ackermann, "Alumina Manufactured by Fused Filament Fabrication: A Comprehensive Study of Mechanical Properties and Porosity," Polymers, vol. 14, no. 5, p. 991, 2022. [Online]. Available: https://www.mdpi.com/2073-4360/14/5/991.
    [21] Z. Lotfizarei, A. Mostafapour, A. Barari, A. Jalili, and A. E. Patterson, "Overview of debinding methods for parts manufactured using powder material extrusion," Additive Manufacturing, vol. 61, p. 103335, 2023/01/05/ 2023, doi: https://doi.org/10.1016/j.addma.2022.103335.
    [22] I. Gibson et al., Additive manufacturing technologies. Springer, 2021.
    [23] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
    [24] 興美材料科技有限公司. "氧化鋯粉末(zirconia powder)." http://www.meitek.com.tw/product.html
    [25] 王奕軒, "高功率半導體雷射金屬粉末燒結積層製造研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2020. [Online]. Available: https://hdl.handle.net/11296/7r3425
    [26] M. T. Zaky, F. S. Soliman, and A. S. Farag, "Influence of paraffin wax characteristics on the formulation of wax-based binders and their debinding from green molded parts using two comparative techniques," Journal of Materials Processing Technology, vol. 209, no. 18, pp. 5981-5989, 2009/09/19/ 2009, doi: https://doi.org/10.1016/j.jmatprotec.2009.07.018.
    [27] J. Wen, Xie, Z., Cao, W. et al., " Effects of different backbone binders on the characteristics of zirconia parts using wax-based binder system via ceramic injection molding," 2016, doi: https://doi.org/10.1007/s40145-016-0205-1.
    [28] 葉東權, "開發碳黑殼核TPU彈性粉末應用於半導體雷射燒熔積層製造," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/m942hk
    [29] G. Wypych, "3.2.1 - Carbon black," in Databook of Antistatics, G. Wypych Ed. Oxford: Elsevier, 2014, pp. 245-271.
    [30] 劉書丞, "製備金屬與高分子複合粉末暨應用於高功率半導體雷射積層製造," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/g2a3g2
    [31] 三帝瑪有限公司. "Sinterit Lisa SLS 3D列印機." https://3dmart.com.tw/shop/sinterit-lisa
    [32] 陳駙潾, "設計製造核殼式析出硬化不鏽鋼粉末用於半導體雷射積層製造研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/m8gc58
    [33] 帝一化工. "正庚烷 n-Heptane." https://shop.dechemical.com.tw/product?pid_for_show=4559
    [34] ASTM International. C1327-03 Standard Test Method for Vickers
    Indentation Hardness of Advanced Ceramics. West Conshohocken, PA; ASTM
    International, 2003."
    [35] C.-T. Kao, W.-H. Tuan, C.-Y. Liu, and S.-C. Chen, "Effect of iron oxide coloring agent on the sintering behavior of dental yttria-stabilized zirconia," Ceramics International, vol. 44, no. 5, pp. 4689-4693, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.ceramint.2017.12.049.

    無法下載圖示 全文公開日期 2033/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE