簡易檢索 / 詳目顯示

研究生: 林朝榮
Chao-Jung Lin
論文名稱: 光阻層鍍上銦薄膜之近場光學微影點加工模式分析
Scanning Near Field Optical Microscopy Lithography Dot Processed Mode Analysis of Photoresist layer Coating Indium Thin Film
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 許覺良
none
傅光華
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 83
中文關鍵詞: 近場微影點加工功率密度半高線寬
外文關鍵詞: powerdensi, near field lithography Dot Processed
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的在於探討光阻層上蒸鍍一層金屬層之近場光學微影點加工的技術,藉由光學模擬分析金屬層之特性,並且以定性分析來證明此技術能有效地縮小光阻層上得記號寬度與半高寬。
    此技術是將一層薄薄(約10nm)的金屬遮罩層,將聚焦的雷射光通過鍍鋁光纖探針口徑後,輻射在金屬層後會產生熔融區與結晶區,兩者的穿透率會不相同。金屬層熔融區有開啟小於雷射光束之孔徑,而產生熱致超解析效應。相對光阻層上面的曝光面積會因此縮小。由模擬結果可以發現,鍍銦膜與未鍍銦的記號寬度縮減的範圍可達到約 15%,但由於本模擬之加工深度太淺,因此半高寬並沒有縮減反而有增加的趨勢。
    本文最後調整探針口徑、曝光時間、光功率、顯影時間、銦膜厚度、能量密度等以上六種參數,來觀察這些參數值對於記號寬度、半高寬與深度的影響。當中發現顯影時間是降低半高寬的主要參數,因此增加顯影時間之後,若以鍍銦10nm模擬結果來討論,在記號寬度縮減達到15%,而半高寬縮減為2.2%。


    The objective of this research is to study an innovative lithography using the effect of thermal-induced super resolution, and to demonstrate that the technique can effectively reduce the exposed pit width on the photoresist layer.
    The technique makes use of a thin metallic mask layer deposited on the top of the photoresist layer. After illuminating with a focused laser beam, the mask layer opens an aperture in melting temperature area around the center of the laser spot. Because the aperture size is much smaller than the laser spot and the optical properties of solid mask layer are different from those of melting one, the intensity distribution of the transmission light would become narrower than that of the incident light and forms a below spot size. Can be found from the result of imitating, the range plating the indium membrane and reducing with the width of the mark not plating the indium can have been up to about 15%, but because simulation this processing depth too shallow, so FWHM to is it have trend of increase instead to reduce while being wide.
    This text to adjust probe bore and exposure time and power and development time and indium thin film thickness and energydensity above parameter. To observe this parameter of effect for pit width and FWHM. According to the simulation results, Indium thin film with a range of thickness 10 nm was evaporated on the photoresist layer as metallic mask layer. the pit width on the photoresist layer could be shrunk by more than 15% and FWHM could be shrunk 2.2%.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 符號表 X 第一章 緒論 1.1 前言 1 1.2研究動機與目的 3 1.3文獻回顧 3 1.4 論文架構 8 第二章 近場光學理論模式 2.1近場光學顯微鏡簡介 12 2.2近場光學顯微術雷射光源之光強度調制與控制 13 2.3鍍鋁層光纖探針近場之光強度分析 14 第三章 近場光學微影加工簡介 3.1近場光學微影加工機制 21 3.2曝光與顯影的機制 21 3.3 光阻曝光模型分析 22 3.4光阻顯影模型分析 25 第四章 薄膜光學理論模式 4.1金屬膜光學性質分析 29 4.2光模擬計算與分析 33 第五章 整合近場微影加工理論模式分析 5.1鍍鋁層光纖探針近場之光強度分析 36 5.2光阻曝光模型分析 37 5.3光阻顯影模型分析 39 5.4 近場光學微影點加工之模擬程式 41 5.5熱致超解析效應 42 第六章 熱傳導理論模式 6.1 一維熱傳方程式 44 6.2 熱模擬計算與分析 47 第七章 結果討論 7.1微影加工模擬參數 49 7.2微影點加工模擬結果 51 7.3 改變參數模擬分析 53 7.3.1 改變光纖探針口徑 54 7.3.2 改變光功率 56 7.3.3 改變曝光時間 57 7.3.4 改變顯影時間 57 7.3.5 改變銦膜厚度 59 7.3.6 改變能量密度 60 7.4 討論 61 第八章 結論 8.1結論 63 8.1結論 63 參考文獻 65

    [1] E. Betzig, J. K. Yrautman and T. D. Harris, et al. ”Breaking the diffraction barrier, optical microscopy on a nanometric scale,” Science 251(5000), pp1468-1470 (1991)

    [2] H. A. Bethe, ”Theory of Diffraction by Small Holes,” Physical Review , Vol.66, pp163-182 (1944).

    [3] C. J. Bouwkamp, ”On Bethe’s Theory of Diffraction by Small Holes,” Philips Research Reports 5, pp321-332 (1950).

    [4] Y. Leviatan and R. F. Harrington, ”A Low Frequency Moment Solution for Electromagnetic Coupling Through an Aperture of Arbitrary Shape,” Arch. Elektr. Ubertr. 38, pp231-238 (1984).

    [5] Y. Leviatan, ”Study of near-zone fields of a small aperture,” J. Appl. Phys. 60(5),1 September, pp1577-1583 (1986).

    [6] F. L. Neerhoff and G. Mur, ”Diffraction of a plane electromagnetic wave by a slit in a thick screen placed between two different media,” Appl. Sci. Res. 28, pp73-88 (1973)

    [7] A. Roberts,”Near-zone fields behind circular apertures in thick, perfectly conducting screens, ” J. Appl. Phys. 15 April 65(8), pp2896-2899 (1989)

    [8] C. A. Balanis, ”Advanced Engineering Electromagnetics,” John Wiley & Sons, Inc. New York, pp282-284 (1989).

    [9] L. Novotny, D. w. Pohl and P. Regli. , ”Near-field, far-field and imaging properties of the 2D aperture SNOM,” Ultramicroscopy, 57(2-3), pp180-188 (1995).

    [10] L. Novotny, D. w. Pohl and P. Regli., ”Light propagation through nanometer sized structures : the two-dimension aperture scanning near-field optical microscope,” J. Opt. Soc. Am.A.,11(6), pp1768-1779 (1994).

    [11] A. Naber, H. Kock and H. Fuchs, ”High-Resolution Lithography with Near-Field Optical Microscopy,” Scanning Vol. 18, pp567-571 (1996).

    [12] Shi-Che Lo and Homg-Nian Wang,” Near-field Photolithography by a Fiber Probe,” Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 28-30 Oct. pp36-39 (2001).

    [13] F. H. Dill, W. P. Hornberger, P. S. Hauge and J. M. Shaw, ” Characterization of Positive Photoresist,” IEEE Trans. Electr. Dev., Vol. ED-22, NO. 7, JULY, pp445-452 (1975).

    [14] S. V. Babu and E. Barouch, ”Exact Solution of Dill’s Model Equation for Positive Photoresist Kinetics,” IEEE Electr. Dev. Lrtters, Vol. EDL-7, NO. 4, APRIL, pp252-253 (1986).

    [15] F. H. Dill, W. P. Hornberger, P. S. Hauge and J. M. Shaw, ” Characterization of Positive Photoresist,” IEEE Trans. Electr. Dev., Vol. ED-22, NO. 7, JULY, pp445-452 (1975).

    [16] S.V.Babu and E. Barouch, ”Exact Solution of Dill’s Model Equation for Positive Photoresist Kinetics,” IEEE Electr. Dev. Lrtters, Vol. EDL-7, NO. 4, APRIL, pp252-253 (1986).

    [17] C. A. Mack, “Development of Positive Photoresists,” J. Electrochem. Soc.: Solid–State Science and Technology, Vol.134, No. 1, pp148-152 (1987).

    [18] Katsuhisa Aratani, Minoru Kohno, and Kenjiro Watanabe, “Method for Reproduction Singnal Using an External Magnetic Field from Magneto-Oprical Record Medium Having There Magnetic Layers”, US patent 5018119(1991)

    [19] Kouich Yasuda, Masumi Ono, Katsuhisa Aratani, Atsushi Fukkmoto, and Masahiko, “Premastered Optical Disk by super resolution”, Jpn. J. Appl. Phy.,32 p.5210(1993)

    [20] Takanobu Higuchi, Yoichi Okumuro and Tetsuya Iida, “High-Density Optical Disc Mastering Using Photobleachable Dye”, Jpn. J. Appl. Phy.,37 p.2130(1998)

    [21] Masashi Kuwahara, Takashi Nakano, Junji Tominaga, Myung Bok Lee and Nobufumi Atoda, “High-Speed Optical Near Field Photolithography by Super resolution Near-Field Structure”, Jpn. J. Appl. Phy.,38 1079(1999)

    [22] Tsai, Shih-Yaon, Hsieh, Tsung -Eong, Shieh, Han-Ping D., ” Optical disk mastering an using optical superresolution effect ” Proc. SPIE Vol. 4081, p.95-102(2000).

    [23] Shieh, Han-Ping D., Tsai, Shih-Yaon, Peng, Yi-Hsing, Hsieh, Tsung –Eong, ” Optical disk mastering an using optical superresolution Technique ” Jpn. J. Appl. Phys. Vol. 40 p. 1671-1675 (2001).

    [24] Zone-Ching Lin and Ching-Been Yang, “The Near-Field Power Density Distribution Characteristics for Different Type Optical Fiber Probes” has been accepted The International Journal of Advanced Manufacturing Technology, 21 January (2004).

    [25] P.Baumeister and G.Pincus, “Optical interference Coatings”,Sci. Amer. Vol.59, P.223 (1970).

    [26] Yutaka Kasami, Kouichi Yasuda, Masumi Ono, Atsushi Fukumoto and Masahiko Kaneko, “Premastered Optical Disk by Superresolution Using Rear Aperture Detection”, Jpn. J. Appl. Phy., Vol.35,423 (1996).

    [27] M.L.Theye and G.Devant, ”Optical Peoperties Of Indium From Thin Films Meaxurement”, Thin Solid Films, Vol4. 205(1969).

    [28] William T. Silfvast, “Laser Fundamentals” Cambrige University Press,New York, pp312-337 (1996).

    [29] A.Rosencwanig, “Photoacoustics and Photoacoustic Spectroscopy Chemical Analysis” Vol. 57, Wiley, New York, (1980).

    [30] Shi-Che Lo and Homg-Nian Wang,” Near-field Photolithography by a Fiber Probe,” Nanotechnology, 2001. IEEE-NANO 2001. Proceedings of the 2001 1st IEEE Conference on, 28-30 Oct. pp36-39 (2001).

    [31] C. J. Coombes, ”The melting of small particles of lead and indium” J. Phys. F:Metal Phys.,Vol. 2, May (1972).

    [32] M.J Duggin. “The thermal consuctivity of liquid lead and indium” J. Phys. F:Metal Phys.,Vol. 2, May (1972).

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE