簡易檢索 / 詳目顯示

研究生: 蕭安盛
An-Shen Siao
論文名稱: 焦電材料於能源擷取之理論與實驗分析
Theoretical and Experimental Analysis of Pyroelectric Materials in Energy Harvesting Applications
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 馬劍清
Chien-Ching Ma
吳光鐘
Kuang-Chong Wu
黃榮芳
Rong-Fung Huang
張瑞慶
Rwei-Ching, Chang
謝志文
Zhi-Wen, Xei
蕭俊卿
Chun-Ching Hsiao
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 117
中文關鍵詞: 鐵電材料焦電能量轉換結構設計熱應力居禮溫度奧森循環能量-功率密度圖
外文關鍵詞: Ferroelectric materials, Pyroelectric energy conversion, Structural designs, Thermal stress, Curie Temperature, Olsen cycle, Ragone plots
相關次數: 點閱:215下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用鐵電材料直接將熱能轉化為電能,透過數值分析、結構設計和外部施加電場來提高鐵電材料的電感應和材料能量轉換效率。鐵電材料是屬於焦電材料的一個子類,其特殊焦電效應能夠將時間相關的溫度直接轉換成電能。一般而言,焦電材料的等效電路通常被認為是一理想電流源Ip與其等效電容Cp和電阻Rp並聯,當電極面積相等時,減少材料厚度可提升電荷產生率,但過度減少厚度將導致感應電壓值下降。因此,本研究提出具有高溫度靈敏性,以及優良的寄生電阻Rp與寄生電容Cp之條狀結構焦電元件。即使損失約50%電極面積,但其獵能效率相較於全覆蓋元件可提升約7倍之多。此外,由模擬結果顯示,增加輸入熱通量並透過強制對流冷卻的方式也可有效提升厚度0.2 mm之盤型焦電元件約14倍之飽和儲能電壓,並確保試片不會因溫度過高而損失極化量。而焦電材料因溫度急遽變化所造成的不均勻溫度場,進而產生的熱應力也是影響材料使用效率的重要因素,應力過大將導致材料斷裂或是嚴重翹曲,最後使得材料破壞失效。可惜的是,透過改變加熱冷卻機制或結構設計雖可提升發電量,但線性焦電獵能仍然只能被應用在遠低於居禮溫度條件下產生微量電能。因此,本研究使用PNNZT在EL = 0.3 MV/m、EH = 3.0 MV/m、Tcold = 20°C與Thot = 220°C的條件下執行奧森循環,獲得了1417 J/L/cycle的能量密度,就我們所知,這是目前透過實驗執行奧森循環所能獲得的最大能量密度。最後,本研究引入了能量-功率密度比較圖,比較這些不同材料進行奧森循環的能量轉換效率。總括而言,本研究所提出的數值分析、結構設計以及奧森循環有助於提高與評估鐵電材料於廢熱回收的能量轉換效率與使用壽命。


    This research is concerned with the direct conversion of thermal energy into electricity using ferroelectric materials. It aims to enhance the electrical power generation and material energy conversion efficiency of ferroelectric material by numerical analysis, structural designs and external applied electrical field. Ferroelectric materials are a subclass of pyroelectric materials, they are capable of converting time-dependent temperature directly into electrical energy. Generrally, the equivalent circuit of pyroelectric material is considered a source of current in parallel with its equivalent capacitance Cp, and resistance Rp. Reducing sample thickness with constant electrode area is helpful to generate more electric charge by pyroelectric materials. On the contrary, the induced voltage would be decreased with decreasing sample thickness. Here, this research reports a strip pyroelectric cell with good temperature sensitive mutation, high parasitic resistance and low parasitic capacitance. Eventhough the pyroelectric cell remains only 50% electrode area, the saturated voltage can be improved 7-times larger than full-covered sample. Besides, the numerical result shows that increasing input heat flux and using forced-convection cooling method are also conducive to enhance about 14-times saturated voltage of 0.2 mm thick disk pyroelectric cell, and to avoid diapole depolaring at high temperature. In addition, the non-uniform temperature field on pyroelectric materials is also the one of influential factor, which results in the materials fracture, serious warpage, or failure due to increased thermal stress. However, such approach still generates only a small amount of electrical energy far below its Curie temperature. By contrast, Olsen cycle is performed by cycling the temperature and the electric field imposed on the pyroelectric element. This research reports a maximum energy density of 1417 J/L/cycle recorded with 0.2 mm thick PNNZT and cycled at 0.033 Hz between temperatures 20°C and 240°C and electric fields 0.3 MV/m and 9.0 MV/m. To the best of our knowledge, this is the largest energy density ever obtained experimentally for any pyroelectric material. Finally, we introduced the Ragone plot in order to compare the energy conversion efficiency of these various materials performed Olsen cycle. Overall, this study contributes to the advancement of ambient energy harvesting using ferroelectric materials.

    中文摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖表索引 vii 符號索引 xiii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 機械能與廢熱能源 1 1.3 材料特性 4 1.3.1 介電材料 4 1.3.2 結晶介電材料 6 1.3.3 鐵電與順電材料 7 1.3.4鐵電磁滯曲線 7 1.3.5 相變化的影響 8 1.3.6 洩漏電流與電場極化 9 1.3.7 壓電效應 10 1.3.8 焦電效應 11 1.4 焦電材料的種類 12 1.5 焦電效應之應用 13 1.5.1 線性焦電獵能 13 1.5.2 非線性焦電獵能 20 1.6 本文架構 24 第二章 不同幾何尺寸之焦電獵能元件 26 2.1 引言 26 2.2 基本假設 28 2.3 數值模擬與實驗方法 29 2.3.1. 焦電集總參數熱動力模型 29 2.3.2. 焦電元件製備流程 32 2.3.3. 量測架構 35 2.4 結果與討論 36 2.4.1. 開路與短路電路分析 36 2.4.2. 儲能電路分析 41 2.5 結論 42 第三章 條狀結構之焦電獵能元件 43 3.1 引言 43 3.2 有限元素分析與實驗方法 44 3.2.1 有限元素之流體熱傳模型創建 44 3.2.2 條狀結構之焦電元件 46 3.2.3 製程流程 47 3.2.4實驗量測架構 49 3.3 結果與討論 50 3.3.1 有限元素之流體熱傳模型創建 50 3.3.2 寄生電阻(Rp)與寄生電容(Cp) 53 3.3.3 開路電路分析 54 3.3.4 儲能電路分析 56 3.4 結論 57 第四章 盤形焦電獵能元件於太陽能獵取之應用與熱應力分析 58 4.1 引言 58 4.2 基本假設 59 4.3 數值分析與研究方法 59 4.3.1 熱動力耦合電路模型 59 4.3.2. 有限體積法 61 4.3.3 開路電流 62 4.3.4 儲能電路 63 4.3.5 盤型焦電元件之儲能實驗架構 65 4.3.6 熱應力數值分析 66 4.4 結果與討論 67 4.4.1 開路電流分析 67 4.4.2 儲能電路分析 70 4.4.3 加熱與冷卻方式對儲能效率的影響 74 4.4.4 加熱與冷卻方式對材料熱應力的影響 76 4.5 結論 81 第五章 應用Pb(Zr, Ti)O3-Pb(Ni, Nb)O3焦電陶瓷執行奧森循環進行廢熱回收 82 5.1 引言 82 5.2 原理介紹 83 5.2.1 介電磁滯曲線 83 5.2.2 奧森循環 83 5.3 材料與實驗架構 85 5.3.1 材料選用 85 5.3.2 試片加工 85 5.3.3 實驗架構 86 5.4 結果與討論 86 5.4.1 等溫雙極磁滯曲線 86 5.4.2 居禮溫度 89 5.4.3 奧森循環-低電場EL與高溫Thot的影響 89 5.4.4 奧森循環-高電場EH與高溫Thot的影響 93 5.4.5 奧森循環-高電場EH與高溫Thot的影響 96 5.4.6 能量密度對功率密度圖(Ragone plots) 99 5.5 結論 106 第六章 綜合討論與未來展望 107 6.1 總結概要 107 6.1.1不同幾何尺寸之焦電獵能元件 107 6.1.2 條狀結構之焦電獵能元件 108 6.1.3盤形焦電獵能元件於太陽能獵取之應用與熱應力分析 108 6.1.4應用Pb(Zr, Ti)O3-Pb(Ni, Nb)O3焦電陶瓷執行奧森循環進行廢熱回收 109 6.2 建議與未來展望 110 參考文獻 111

    1. J. Leslie, The End of the World: the science and ethics of human extinction. 2002: Routledge.
    2. L.B. Lave and E.P. Seskin, An analysis of the association between US mortality and air pollution. Journal of the American Statistical Association, 1973. 68(342): p. 284-290.
    3. S.R. Anton and H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 2007. 16(3): p. R1.
    4. M. Belleville and C. Condemine, Energy autonomous micro and nano systems. 2012: John Wiley & Sons.
    5. S. Roundy, P.K. Wright, and J.M. Rabaey, Energy scavenging for wireless sensor networks. Norwell, 2003: p. 45-47.
    6. S.P. Beeby, M.J. Tudor, and N. White, Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 2006. 17(12): p. R175.
    7. S. Doty and W.C. Turner, Energy management handbook. 2004: Crc Press.
    8. M.J. Moran, H.N. Shapiro, D.D. Boettner, and M.B. Bailey, Fundamentals of engineering thermodynamics. 2010: John Wiley & Sons.
    9. Lawrence-Livermore-National-Laboratory. US energy flow trends-2017. Available from: https://flowcharts.llnl.gov/.
    10. D. Thombare and S. Verma, Technological development in the Stirling cycle engines. Renewable and Sustainable Energy Reviews, 2008. 12(1): p. 1-38.
    11. H. Chen, D.Y. Goswami, and E.K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 2010. 14(9): p. 3059-3067.
    12. B.-T. Liu, K.-H. Chien, and C.-C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004. 29(8): p. 1207-1217.
    13. S.B. Riffat and X. Ma, Thermoelectrics: a review of present and potential applications. Applied Thermal Engineering, 2003. 23(8): p. 913-935.
    14. M. Zebarjadi, K. Esfarjani, M. Dresselhaus, Z. Ren, and G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environmental Science, 2012. 5(1): p. 5147-5162.
    15. A. Costela, I. García-Moreno, and R. Sastre, Handbook of advanced electronic and photonic materials and devices. Academic Press: San Diego, CA, 2001. 7: p. 161.
    16. S.B. Lang, Sourcebook of pyroelectricity. Vol. 2. 1974: CRC Press.
    17. S.B. Lang, Pyroelectricity: from ancient curiosity to modern imaging tool. Physics Today, 2005. 58(8): p. 31.
    18. M. Ikura, Conversion of low-grade heat to electricity using pyroelectric copolymer. Ferroelectrics, 2002. 267(1): p. 403-408.
    19. M. Itskovsky, Pyroelectric hysteresis loop at ferroelectric phase transition. Journal of Applied Physics, 1999. 85(8): p. 4256-4258.
    20. H.-M. Bao, J.-F. Song, J. Zhang, Q.-D. Shen, C.-Z. Yang, and Q. Zhang, Phase transitions and ferroelectric relaxor behavior in P(VDF−TrFE−CFE) terpolymers. Macromolecules, 2007. 40(7): p. 2371-2379.
    21. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, and Q. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006. 313(5785): p. 334-336.
    22. L. Kouchachvili and M. Ikura, Pyroelectric conversion—effects of P(VDF–TrFE) preconditioning on power conversion. Journal of Electrostatics, 2007. 65(3): p. 182-188.
    23. L. Kouchachvili and M. Ikura, Improving the efficiency of pyroelectric conversion. International Journal of Energy Research, 2008. 32(4): p. 328-335.
    24. R.B. Olsen, D.A. Bruno, J.M. Briscoe, and E.W. Jacobs, Pyroelectric conversion cycle of vinylidene fluoride‐trifluoroethylene copolymer. Journal of Applied Physics, 1985. 57(11): p. 5036-5042.
    25. V. Sencadas, S. Lanceros-Mendez, and J. Mano, Characterization of poled and non-poled β-PVDF films using thermal analysis techniques. Thermochimica Acta, 2004. 424(1-2): p. 201-207.
    26. I.M. McKinley, S. Goljahi, C.S. Lynch, and L. Pilon, A novel thermally biased mechanical energy conversion cycle. Journal of Applied Physics, 2013. 114(22): p. 224111.
    27. I.M. McKinley, F.Y. Lee, and L. Pilon, A novel thermomechanical energy conversion cycle. Applied Energy, 2014. 126: p. 78-89.
    28. L. Pilon and I. McKinley, Pyroelectric energy conversion. Annual Review of Heat Transfer, 2016. 19: p. 279-334.
    29. E.A. McLaughlin, T. Liu, and C.S. Lynch, Relaxor ferroelectric PMN-32% PT crystals under stress, electric field and temperature loading: II-33-mode measurements. Acta Materialia, 2005. 53(14): p. 4001-4008.
    30. N. Srivastava and G. Weng, A theory of double hysteresis for ferroelectric crystals. Journal of Applied Physics, 2006. 99(5): p. 054103.
    31. M.E. Lines and A.M. Glass, Principles and applications of ferroelectrics and related materials. 1977: Oxford university press.
    32. Z. Li, Z. Xi, Z. Xu, and X. Yao, Dielectric/ferroelectric response and phase transition of PMN0. 32PT single crystal. Journal of Materials Science Letters, 2002. 21(17): p. 1325-1327.
    33. F.B. Calleja, A.G. Arche, T. Ezquerra, C. Santa Cruz, F. Batallan, B. Frick, and E.L. Cabarcos, Structure and properties of ferroelectric copolymers of poly (vinylidene fluoride), in Structure in Polymers with Special Properties. 1993, Springer. p. 1-48.
    34. T. Yamada, T. Ueda, and T. Kitayama, Ferroelectric‐to‐paraelectric phase transition of vinylidene fluoride‐trifluoroethylene copolymer. Journal of Applied Physics, 1981. 52(2): p. 948-952.
    35. M.W. Hooker, Properties of PZT-based piezoelectric ceramics between-150 and 250 C. 1998.
    36. A. Herklotz, J.D. Plumhof, A. Rastelli, O.G. Schmidt, L. Schultz, and K. Dörr, Electrical characterization of PMN–28% PT (001) crystals used as thin-film substrates. Journal of Applied Physics, 2010. 108(9): p. 094101.
    37. Q. Wan, C. Chen, and Y. Shen, Effects of stress and electric field on the electromechanical properties of Pb(Mg0.33Nb0.66)O3–0.32PbTiO3 single crystals. Journal of Applied Physics, 2005. 98(2): p. 024103.
    38. H. Nguyen, A. Navid, and L. Pilon, Pyroelectric energy converter using co-polymer P(VDF-TrFE) and Olsen cycle for waste heat energy harvesting. Applied Thermal Engineering, 2010. 30(14-15): p. 2127-2137.
    39. C. Brown, R. Kell, R. Taylor, and L. Thomas, Piezoelectric materials, a review of progress. IRE Transactions on Component Parts, 1962. 9(4): p. 193-211.
    40. A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, IEEE Standard on Piezoelectricity. 1988, Society.
    41. R. Kumar, D. Molin, L. Young, and F. Ke. New high temperature polymer thin coating for power electronics. in Applied Power Electronics Conference and Exposition, 2004. APEC'04. Nineteenth Annual IEEE. 2004. IEEE.
    42. Z. Li, Z. Xu, Z. Xi, F. Xiang, and X. Yao, Thermal expansion characteristics in [001]-oriented PMN-0.32 PT single

    QR CODE