簡易檢索 / 詳目顯示

研究生: 簡國訓
Kuo-Syun Chien
論文名稱: 高頻分時多相串聯-串聯諧振式無鐵芯電源轉換器
High Frequency Time-division Multi-phase Series-series Resonant Coreless Power Converter
指導教授: 林景源
Jing-Yuan Lin
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yau-Ching Hsieh
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 氮化鎵元件分時多相串聯-串聯轉換器高頻無鐵芯平板變壓器線圈繞製次序
外文關鍵詞: Gallium Nitride device, time-division multi-phase series-series power converter, high frequency, coreless planar transformer, winding configuration
相關次數: 點閱:233下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製高頻分時多相串聯-串聯電源轉換器,並以無鐵芯平板變壓器作為主要傳送功率之架構,以達薄型、輕量化之目的。並說明研製平板線圈以及效率最佳化之考量,且初級側開關具零電壓切換功能,減少電路高頻操作之切換損耗;次級側方面使用同步整流技術以減少導通損耗。初、次級側開關以氮化鎵功率元件替換傳統矽材料功率開關,減少電源轉換器體積以及高頻的切換損耗,提升整體電路的功率密度。於平板變壓器的基礎下,透過Maxwell軟體模擬線圈之幾何形狀並透過分析以獲得高品質因數的線圈架構。藉由改善線圈繞製次序設計方式,減少線圈損耗,並提高變壓器耦合係數以提升傳輸效率。最後分析不同匝數比之線圈對於諧振電流與元件損耗之影響,以取得最佳化平板變壓器設計。由實驗結果得知,整體最大輸出功率100W,最高電能轉換效率為87.8%,並驗證線圈參數對於損耗之影響。


    This thesis presents a high frequency time-division multi-phase series – series power converter, and using coreless planar transformer as the main structure of transmission power that achieve the purpose of thinning size. Explain how to choose the best planar coils and optimize overall circuit efficiency. In order to reduce its switching loss at high frequency, primary side switches achieve Zero-Voltage-Switching(ZVS). Synchronous rectifier is utilized on the secondary side to minimize the conduction loss. Gallium Nitride devices are used both at primary and secondary switches to reduce the converter volume and switching losses to achieve high power density. Based on the planar transformer design, analyze the geometric shape of coils through Maxwell to obtain higher quality factor coils. Reducing copper loss of primary and secondary side, and increase the coupling coefficient to improve transmission efficiency by changing the winding configuration. Eventually, analyze the effect of coils with different turns-ratio for resonant tank current and element loss to select optimal planar transformer. According to the experimental result, the maximum output power of overall systems is 100W and the highest power transmission efficiency can be up to 87.8%, and verify effect of the coils parameter for overall loss.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 v 圖索引 viii 表索引 xi 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 2 第二章 高頻元件分析及選擇 4 2.1 氮化鎵元件介紹 4 2.1.1氮化鎵元件結構 5 2.1.2氮化鎵元件驅動及佈局考量 6 2.2 線圈於高頻之特性 11 2.2.1集膚效應 12 2.2.2鄰近效應 13 2.3 無鐵芯變壓器之等效模型分析 14 2.3.1耦合電感模型推導 15 2.3.2變壓器模型推導 17 2.3.3耦合係數之量測 19 第三章 分時多相串聯-串聯諧振轉換器分析 21 3.1諧振電路分析 21 3.1.1串聯-串聯諧振電路原理 21 3.1.2基本波近似法 22 3.2諧振槽轉移函式之分析 24 3.2.1基於耦合電感模型之分析 24 3.2.2基於非理想變壓器模型之分析 27 3.2.3電感、電容性分界及其工作區間之選擇 29 3.3分時多相串聯-串聯諧振式轉換器 32 3.3.1分時多相串聯-串聯諧振轉換器介紹 32 3.3.2分時多相串聯-串聯諧振轉換器工作區間 34 第四章 分時多相式串聯-串聯諧振式轉換器參數設計 41 4.1電路規格 41 4.2線圈選擇及設計 42 4.2.1印刷電路板感應線圈之分析 42 4.2.2螺旋線圈分析 44 4.3無鐵芯平板變壓器設計及考量 48 4.3.1線圈繞製次序設計 49 4.3.2實際匝數比與穩壓考量 51 4.4諧振槽設計 55 4.5變壓器比較及電路損耗分析 56 4.5.1變壓器模擬參數 56 4.5.2損耗分析 59 4.6高頻寄生電容對於零電壓切換之影響 65 4.7同步整流技術 67 4.7.1同步整流技術優點 67 4.7.2同步整流技術之信號控制 68 第五章 實驗結果與數據比較 70 5.1規格與實驗儀器 70 5.2實驗波形 72 5.3實驗結果與數據比較 76 第六章 結論與未來展望 80 6.1結論 80 6.2未來展望 80 參考文獻 82

    [1] Qianhong Chen, Chi K. Tse, Siu-Chung Wong,, Wei Zhang, “Design for Efficiency Optimization and Voltage Controllability of Series–Series Compensated Inductive Power Transfer Systems” Transactions on Power Electronics, vol. 29, no.1, January. 2014
    [2] 謝昕哲,「雙向串聯諧振式無線能量傳輸系統之研製」,國立台灣科技大學電子工程系碩士論文,2016年。
    [3] 張遠帆,「具疊圈型感應耦合結構陣列之非接觸式電動車供電軌道」,國立成功大學電機工程學系碩士論文,2014年。
    [4] GaN Systems. How to drive GaN Enhancement mode HEMT [Online]. Available: http://www.mouser.com/pdfDocs/343654_GaNSystems__GN001_How_To_drive_GaN_EHEMT_Rev_20160426.pdf, 2016
    [5] GaN Systems. About Gallium Nitride [Online]. Available: http://www.gansystems.com/why_gallium_nitride_new.php, 2017
    [6] UBM Tech EDN. About Si vs. SiC vs. GaN [Online]. Available: http://radio-hobby.org/uploads/journal/EDN/2013/EDN_03_2013.pdf, 2013
    [7] GaN Systems. About Gallium Nitride [Online]. Available: https://gansystems.com/wp-content/uploads/2018/02/GN001_Design_with_GaN_EHEMT_180228-1.pdf, 2018
    [8] EPC. Gallium Nitride (GaN) Technology Overview [Online].Available: http://epc-co.com/epc/Portals/0/epc/documents/product-training/AN003%20Using%20Enhancement%20Mode%20GaN-on-Silicon-tw.pdf, 2017
    [9] 林政宏,「高功率密度主動箝位返馳式轉換器之研製」,國立台灣科技大學電子工程系碩士論文,2017年。
    [10] 沈鳳麒,「具非接觸式供電監控單元之植入型電刺激器」,國立成功大學電機工程學系碩士論文,2014年。
    [11] Choi B., “Contactless energy transfer using planar circuit board windings,” Electronics Letters Vol. 37, Issue 16, pp.1007-1009, August. 2001.
    [12] Hui S.Y., “coreless planar printed-circuit-board transformer,” Transactions on Power Electronic, Vol. 15, no. 5, September. 2000.
    [13] Tohss H., Saito Y., “Realization of a coreless transformer and its application to a DC/DC converter,” Elektrotechn .Cas. 44, no. 7, 238-241, 1993.
    [14] Bull Will. “Advanced training course Skin effect & proximity effect,” 2014.
    [15] GaN Systems. GS61004B Bottom-side cooled 650VE-mode GaN transistor Preliminary Datasheet [Online]. Available: https://gansystems.com/wp-content/uploads/2018/02/GS61004B-DS-Rev-180213.pdf, 2018.
    [16] 蘇英傑,「1MHz LLC半橋串聯諧振轉換器」,國立台灣科技大學電子工程系碩士論文,2017年。
    [17] Z. U. Zahid et al., “Modeling and Control of Series–Series Compensated Inductive Power Transfer System, ” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 111-123, March 2015.
    [18] M.Ryu, H.Cha, Y.Park and J.Back, “Analysis of The Contactless Power Transfer System Using Modelling and Analysis of The Contactless Transformer,” Industrial Electronics Society, 2005.
    [19] D. Thenathayalan and J. H. Park, “Wide-Air-Gap Transformer Model for the Design-Oriented Analysis of Contactless Power Converters,” in IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6345-6359, October. 2015.
    [20] Mayordomo, T. Dräger, P. Spies, J. Bernhard and A. Pflaum, “An Overview of Technical Challenges and Advances of Inductive Wireless Power Transmission,” in Proceedings of the IEEE, vol. 101, no. 6, pp. 1302-1311, June 2013.
    [21] G. A. Covic and J. T. Boys, “Inductive Power Transfer,” in Proceedings of the IEEE, vol. 101, no. 6, pp.1276-1289, June 2013.
    [22] Qianhong Chen, Chi K. Tse, Siu-Chung Wong Wei Zhang, “Load-Independent Duality of Current and Voltage Outputs of a Series- or Parallel-Compensated Inductive Power Transfer Converter With Optimized Efficiency,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, March. 2015.
    [23] C. S.Wang, G. A. Covic and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems,” in IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148-157, February. 2004.
    [24] 吳義利,「切換式電源轉換器原理與實用技術設計(實例設計導向)」,文笙書局股份有限公司,2015年
    [25] Chenggang Fang, Jiancheng Song, Lingyan Lin,Yameng Wang, “Practical Considerations of Series-Series and Series-Parallel Compensation Topologies in Wireless Power Transfer System Application,”
    [26] 蔡富斌,「具同步整流之數位控制半橋串聯諧振轉換器之研製」,國立台灣科技大學電子工程系碩士論文,2012年。
    [27] M.Kazimierczuk, D.Czarkowski, “Resonant Power Converters,” Wiley, 1995.
    [28] C. Zheng et al., “Realization of a coreless transformer and its application to a DC/DC converter,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 65-74, March. 2015.
    [29] C. S.Wang, O. H. Stielau and G. A. Covic, “Design Considerations For a Contactless Electric Vehicle Battery Charger,” in IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308-1314, October. 2005.
    [30] W. Zhang, S. C. Wong, C. K. Tse and Q. Chen, “Analysis and Comparison of Secondary Series- and Parallel-Compensated Inductive Power Transfer Systems Operating for Optimal Efficiency and Load-Independent Voltage-Transfer Ratio,” in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 2979-2990, June. 2014.
    [31] C. S.Wang, G. A. Covic and O. H. Stielau, “General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems,” The 27th Annual Conference of the IEEE, Denver, CO, vol.2, pp. 1049-1054 , 2001.
    [32] Abdoulkarim Bouabana, Constantinos Sourkounis, Malte Mallach, “Design and analysis of different structures of a coreless planar transformer for a flyback converter,” International Symposium on Power Electronics, Electrical Drives, Automation and Motion 2012.
    [33] David Reusch, Ph.D., Efficient Power Conversion Corporation, “Impact of Parasitics on Performance,” 2013.

    QR CODE