簡易檢索 / 詳目顯示

研究生: 黃信寧
Huin-Ning Huang
論文名稱: 微電漿輔助奈米複合材料合成及其表面增強拉曼散射光譜應用
Microplasma-Assisted Nanohybrids Synthesis and Its Application in Surface-Enhanced Raman Scattering (SERS)
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 何國川
Kuo-Chuan Ho
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 106
中文關鍵詞: 大氣常壓微電漿表面增強拉曼散射奈米複合材料
外文關鍵詞: Microplasma, surface-enhanced Raman scattering, nanohybrid
相關次數: 點閱:493下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米碳管與石墨烯是目前最廣為人知的sp2結構奈米碳材料,具有優越的機械以及電學特性。近年來在實驗與理論研究上,金屬奈米粒子與奈米碳管或石墨烯所形成的複合材料都被證實在結合電磁場增強以及化學增強後,此類複合材料有望成為表面增強拉曼散射的良好選項。然而傳統的複合材料合成途徑是透過耗時且複雜的濕式化學法,不利於產業應用。
    我們提供一種簡便的奈米複合材料合成方法,透過大氣常壓微電漿來輔助合成反應進行。微電漿是一種氣體放電型態,其定義為至少需有一幾何維度小是於一毫米才可被稱為微電漿。此外微電漿可與水溶液電極一同作用。透過微電漿內形成的能量物種可以在不含化學還原劑的水溶液環境下驅動電化學反應以及匯聚粒子。根據實驗結果,大氣常壓微電漿反應器可以在數分鐘內快速地合成金屬奈米粒子,我們將此方法進一步延伸到奈米複合材料的合成。所合成的材料經紫外光光譜、穿透式電子顯微鏡、拉曼光譜以及X光光電子光譜進行鑑定。並發現利用微電漿陰極與陽極分解系統所合成的銀金屬奈米粒子/氧化石墨烯複合材料提供了較實驗中其他複合材料更強的表面增強拉曼散射效果。在偵測羅丹名6G的情況下,最低可偵測到10皮摩爾每升的羅丹名6G表面增強拉曼光譜。在增強因子的計算方面則可以提供近1 X 1010的增強因子數值。此外我們也報導了一種以表面增強拉曼散射技術為基礎的高敏感度的多巴胺檢測方法,其偵測濃度最低可達奈摩爾每升。


    In last few decades, carbon nanotubes (CNT) and graphene are two of most famous sp2 bonded carbon atom materials, due to their great mechanical and electrical properties. Recently experimental and theoretical studies have been shown that the nanohybrids of metal nanoparticles (NPs)/CNT or graphene possess superior SERS enhancement by combining electromagnetic (EM) enhancement and chemical (CM) enhancement properties, making them promising candidates for SERS application. However, conventional approaches for nanohybrids synthesis are usually involved time-consuming and laborious wet-chemistry-based methods.
    Here we present a facile synthesis method of nanohybrids using a novel atmospheric-pressure microplasma-assisted reaction. Microplasmas are defined as gaseous discharges formed in electrode geometries where at least one dimension is less than 1 mm. Additionally, microplasmas can be operated with an aqueous solution as an electrode. Energetic species formed in the microplasma are capable of initiating electrochemical reactions and nucleating particles in solution without the need for a chemical reducing agent. In our experiments result, we found metal NPs can be synthesized in minutes scale by using atmospheric-pressure-microplasma-assisted electrochemistry, and we further extend this technology to synthesize metal NPs/CNT or graphene nanohybrids. As-produced samples were characterized by UV-Vis,TEM,Raman and XPS spectroscopy. We systematically study the SERS performance of unprocessed-nanocarbons and nanohybrids and we found that the Ag NPs/GO sample from anode electrode dissolution (ED) method provide strongest SERS enhancement. It can reach 1 X 10-11 M R6G detection and EF value is 9.97 X 109. In addition, we further report a SERS-based dopamine detection method using nanohybrids, which can reach nanomolar level detection.

    List of Table VIII List of figure IX 1 Introduction 1 1.1 Introduction of metal NPs/nanocarbon nanohybrids and application 1 1.2 Synthesis of nanohybrids 3 1.3 Introduction of plasma-assisted liquid reaction 4 1.4 Introduction of microplasma 13 1.5 Introduction of surface-enhanced Raman scattering (SERS) 19 1.6 Introduction of current dopamine sensing techniques 32 1.7 Introductions of SERS-based competitive adsorption DA sensing 33 2 Experiment Section 36 2.1 Chemicals 36 2.2 Apparatus 36 2.3 Different functionalized graphene nanoribbons preparation 37 2.4 Microplasma-liquid system 38 2.5 SERS chip preparation 40 2.6 SERS-based Dopamine Sensing 40 3 Result and discussion 40 3.1 Substrate characterization and GERS 40 3.2 Microplasma-assisted electrochemistry reaction for silver NPs synthsis 48 3.3 Nanohybrids synthesis, characterization and SERS application 55 3.4 SERS-based competitive adsorption for dopamine sensing 67 3.5 Interference factor (IF) 76 4 Conclusion 80 5 Supporting information 81 5.1 Enhanced factor calculation 81 6 Reference 83

    1. Salvetat, J.-P., et al., Mechanical properties of carbon nanotubes. Applied Physics A, 1999. 69(3): p. 255-260.
    2. Zhang, Q., et al., Thermal conductivity of multiwalled carbon nanotubes. Physical Review B, 2002. 66(16): p. 165440.
    3. Dresselhaus, M.S., G. Dresselhaus, and P.C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. 1996: Academic press.
    4. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nature materials, 2007. 6(3): p. 183-191.
    5. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
    6. Fateixa, S., H.I. Nogueira, and T. Trindade, Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 2015.
    7. Liu, M., R. Zhang, and W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chemical reviews, 2014. 114(10): p. 5117-5160.
    8. Turcheniuk, K., R. Boukherroub, and S. Szunerits, Gold–graphene nanocomposites for sensing and biomedical applications. Journal of Materials Chemistry B, 2015. 3(21): p. 4301-4324.
    9. Ma, X., et al., A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research, 2012. 5(3): p. 199-212.
    10. Hafez, I.H., et al., Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Scientific reports, 2014. 4.
    11. Liu, Z., et al., Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging. Physical Chemistry Chemical Physics, 2013. 15(8): p. 2961-2966.
    12. He, Y. and H. Cui, Synthesis of highly chemiluminescent graphene oxide/silver nanoparticle nano-composites and their analytical applications. Journal of Materials Chemistry, 2012. 22(18): p. 9086-9091.
    13. Lan, N.T., et al., Photochemical decoration of silver nanoparticles on graphene oxide nanosheets and their optical characterization. Journal of Alloys and Compounds, 2014. 615: p. 843-848.
    14. Zhou, H., et al., Thickness-Dependent Morphologies of Gold on N-Layer Graphenes. Journal of the American Chemical Society, 2010. 132(3): p. 944-946.
    15. Shen, J., et al., Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano research, 2010. 3(5): p. 339-349.
    16. Fu, W.L., S.J. Zhen, and C.Z. Huang, Controllable preparation of graphene oxide/metal nanoparticle hybrids as surface-enhanced Raman scattering substrates for 6-mercaptopurine detection. RSC Advances, 2014. 4(31): p. 16327-16332.
    17. Goncalves, G., et al., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials, 2009. 21(20): p. 4796-4802.
    18. Muszynski, R., B. Seger, and P.V. Kamat, Decorating Graphene Sheets with Gold Nanoparticles. The Journal of Physical Chemistry C, 2008. 112(14): p. 5263-5266.
    19. Ren, W., Y. Fang, and E. Wang, A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. ACS nano, 2011. 5(8): p. 6425-6433.
    20. Liu, J., et al., Toward a Universal “Adhesive Nanosheet” for the Assembly of Multiple Nanoparticles Based on a Protein-Induced Reduction/Decoration of Graphene Oxide. Journal of the American Chemical Society, 2010. 132(21): p. 7279-7281.
    21. Yang, S., et al., Fabrication of graphene‐encapsulated oxide nanoparticles: towards high‐performance anode materials for lithium storage. Angewandte Chemie International Edition, 2010. 49(45): p. 8408-8411.
    22. Wang, Y., et al., Facile Fabrication of Metal Nanoparticle/Graphene Oxide Hybrids: A New Strategy To Directly Illuminate Graphene for Optical Imaging. The Journal of Physical Chemistry C, 2011. 115(26): p. 12815-12821.
    23. Ostrikov, K. and A. Murphy, Plasma-aided nanofabrication: where is the cutting edge? Journal of Physics D: Applied Physics, 2007. 40(8): p. 2223.
    24. Samukawa, S., et al., The 2012 plasma roadmap. Journal of Physics D: Applied Physics, 2012. 45(25): p. 253001.
    25. Gubkin, J., Electrolytische Metallabscheidung an der freien Oberfläche einer Salzlösung. Annalen der Physik, 1887. 268(9): p. 114-115.
    26. Hickling, A. and M. Ingram, Glow-discharge electrolysis. Journal of Electroanalytical Chemistry (1959), 1964. 8(1): p. 65-81.
    27. Chen, Q., J. Li, and Y. Li, A review of plasma–liquid interactions for nanomaterial synthesis. Journal of Physics D: Applied Physics, 2015. 48(42): p. 424005-424030.
    28. Locke, B.R. and S.M. Thagard, Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chemistry and Plasma Processing, 2012. 32(5): p. 875-917.
    29. Yonezawa, T., et al., Preparation of zinc oxide nanoparticles by using microwave-induced plasma in liquid. Chemistry Letters, 2010. 39(7): p. 783-785.
    30. Sengupta, S.K. and O.P. Singh, Contact glow discharge electrolysis: a study of its chemical yields in aqueous inert-type electrolytes. Journal of Electroanalytical Chemistry, 1994. 369(1–2): p. 113-120.
    31. Rumbach, P., et al., The solvation of electrons by an atmospheric-pressure plasma. Nat Commun, 2015. 6.
    32. Tochikubo, F., et al., Chemical reactions in liquid induced by atmospheric-pressure dc glow discharge in contact with liquid. Japanese Journal of Applied Physics, 2014. 53(12): p. 126201.
    33. Zhou, Y., et al., Formation of Silver Nanowires by a Novel Solid−Liquid Phase Arc Discharge Method. Chemistry of Materials, 1999. 11(3): p. 545-546.
    34. Toriyabe, Y., et al., Controlled formation of metallic nanoballs during plasma electrolysis. Applied Physics Letters, 2007. 91(4): p. 041501.
    35. Allagui, A., E.A. Baranova, and R. Wüthrich, Synthesis of Ni and Pt nanomaterials by cathodic contact glow discharge electrolysis in acidic and alkaline media. Electrochimica Acta, 2013. 93: p. 137-142.
    36. Saito, G., et al., Nickel Nanoparticles Formation from Solution Plasma Using Edge-Shielded Electrode. Plasma Chemistry and Plasma Processing, 2011. 31(5): p. 719-728.
    37. Nakasugi, Y., et al., Synthesis of nonstoichiometric titanium oxide nanoparticles using discharge in HCl solution. Journal of Applied Physics, 2014. 115(12): p. 123303.
    38. Koo, I.G., et al., Platinum nanoparticles prepared by a plasma-chemical reduction method. Journal of Materials Chemistry, 2005. 15(38): p. 4125-4128.
    39. Kazuhiko, B., K. Toshiro, and H. Rikizo, Efficient Synthesis of Gold Nanoparticles Using Ion Irradiation in Gas–Liquid Interfacial Plasmas. Applied Physics Express, 2009. 2(3): p. 035006.
    40. Hieda, J., N. Saito, and O. Takai, Exotic shapes of gold nanoparticles synthesized using plasma in aqueous solution. Journal of Vacuum Science & Technology A, 2008. 26(4): p. 854-856.
    41. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501.
    42. Du, C. and M. Xiao, Cu2O nanoparticles synthesis by microplasma. Scientific reports, 2014. 4.
    43. Lee, S.W., et al., Fabrication of Ir nanoparticle-based biosensors by plasma electrochemical reduction for enzyme-free detection of hydrogen peroxide. Catalysis Today, 2013. 211: p. 137-142.
    44. Bratescu, M.A., N. Saito, and O. Takai, Redox reactions in liquid plasma during iron oxide and oxide-hydroxide nanoparticles synthesis. Current Applied Physics, 2011. 11(5, Supplement): p. S30-S34.
    45. Wang, R., et al., Rapid Synthesis of Aqueous‐Phase Magnetite Nanoparticles by Atmospheric Pressure Non‐Thermal Microplasma and their Application in Magnetic Resonance Imaging. Plasma Processes and Polymers, 2014. 11(5): p. 448-454.
    46. Bouchard, M., et al., Rapid nucleation of iron oxide nanoclusters in aqueous solution by plasma electrochemistry. Langmuir, 2015.
    47. Liu, C.-j., G.P. Vissokov, and B.W.-L. Jang, Catalyst preparation using plasma technologies. Catalysis Today, 2002. 72(3): p. 173-184.
    48. Zou, J.-J., Y.-p. Zhang, and C.-J. Liu, Reduction of Supported Noble-Metal Ions Using Glow Discharge Plasma. Langmuir, 2006. 22(26): p. 11388-11394.
    49. Baba, K., et al., Synthesis of monodispersed nanoparticles functionalized carbon nanotubes in plasma-ionic liquid interfacial fields. Chem. Commun., 2009. 46(2): p. 255-257.
    50. Shim, J., et al., Carbon-supported platinum nanoparticles synthesized by plasma-chemical reduction method for fuel cell applications. Journal of the Electrochemical Society, 2007. 154(2): p. B165-B169.
    51. Park, S.-J. and J.G. Eden, 13–30 micron diameter microdischarge devices: Atomic ion and molecular emission at above atmospheric pressures. Applied Physics Letters, 2002. 81(22): p. 4127-4129.
    52. Mohamed, M., et al., Excimer emission from microhollow cathode argon discharges. Journal of Physics D: Applied Physics, 2003. 36(23): p. 2922.
    53. Lin, L. and Q. Wang, Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chemistry and Plasma Processing, 2015. 35(6): p. 925-962.
    54. Becker, K.H., K.H. Schoenbach, and J.G. Eden, Microplasmas and applications. Journal of Physics D: Applied Physics, 2006. 39(3): p. R55.
    55. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
    56. Foest, R., M. Schmidt, and K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry, 2006. 248(3): p. 87-102.
    57. Mariotti, D., et al., Gas temperature and electron temperature measurements by emission spectroscopy for an atmospheric microplasma. Journal of applied physics, 2007. 101(1): p. 013307.
    58. Fleischmann, M., P.J. Hendra, and A. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
    59. Schatz, G.C., M.A. Young, and R.P. Van Duyne, Electromagnetic mechanism of SERS, in Surface-enhanced Raman scattering. 2006, Springer. p. 19-45.
    60. Stiles, P.L., et al., Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem., 2008. 1: p. 601-626.
    61. McFarland, A.D., et al., Wavelength-scanned surface-enhanced Raman excitation spectroscopy. The Journal of Physical Chemistry B, 2005. 109(22): p. 11279-11285.
    62. Orendorff, C.J., et al., Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Physical Chemistry Chemical Physics, 2006. 8(1): p. 165-170.
    63. Nie, S. and S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science, 1997. 275(5303): p. 1102-1106.
    64. Michaels, A.M., J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. The Journal of Physical Chemistry B, 2000. 104(50): p. 11965-11971.
    65. Kleinman, S.L., et al., Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical Physics, 2013. 15(1): p. 21-36.
    66. Wustholz, K.L., et al., Structure− activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy. Journal of the American Chemical Society, 2010. 132(31): p. 10903-10910.
    67. Valley, N., et al., A look at the origin and magnitude of the chemical contribution to the enhancement mechanism of surface-enhanced Raman spectroscopy (SERS): Theory and experiment. The Journal of Physical Chemistry Letters, 2013. 4(16): p. 2599-2604.
    68. Jensen, L., C.M. Aikens, and G.C. Schatz, Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 2008. 37(5): p. 1061-1073.
    69. Lombardi, J.R., et al., Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions. The Journal of Chemical Physics, 1986. 84(8): p. 4174-4180.
    70. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev., 1998. 27(4): p. 241-250.
    71. Otto, A., et al., Surface-enhanced Raman scattering. Journal of Physics: Condensed Matter, 1992. 4(5): p. 1143.
    72. Xu, W., N. Mao, and J. Zhang, Graphene: A Platform for Surface‐Enhanced Raman Spectroscopy. Small, 2013. 9(8): p. 1206-1224.
    73. Xie, L., et al., Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. Journal of the American Chemical Society, 2009. 131(29): p. 9890-9891.
    74. Swathi, R.S. and K.L. Sebastian, Resonance energy transfer from a dye molecule to graphene. The Journal of Chemical Physics, 2008. 129(5): p. 054703.
    75. Xu, H., et al., Effect of Graphene Fermi Level on the Raman Scattering Intensity of Molecules on Graphene. ACS Nano, 2011. 5(7): p. 5338-5344.
    76. Huh, S., et al., UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering. ACS nano, 2011. 5(12): p. 9799-9806.
    77. Yu, X., et al., Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets. ACS Nano, 2011. 5(2): p. 952-958.
    78. Kim, J.-H., et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002. 418(6893): p. 50-56.
    79. Chen, J.-L., et al., Graphene oxide based photoinduced charge transfer label-free near-infrared fluorescent biosensor for dopamine. Analytical chemistry, 2011. 83(22): p. 8787-8793.
    80. Mu, Q., et al., Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst, 2014. 139(1): p. 93-98.
    81. Yildirim, A. and M. Bayindir, Turn-on Fluorescent Dopamine Sensing Based on in Situ Formation of Visible Light Emitting Polydopamine Nanoparticles. Analytical Chemistry, 2014. 86(11): p. 5508-5512.
    82. Kovac, A., et al., Liquid chromatography–tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy. Talanta, 2014. 119: p. 284-290.
    83. Zeng, Y., et al., A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine. Biosensors and Bioelectronics, 2013. 45: p. 25-33.
    84. Bu, Y. and S. Lee, Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS applied materials & interfaces, 2012. 4(8): p. 3923-3931.
    85. Etchegoin, P.G. and E. Le Ru, A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 2008. 10(40): p. 6079-6089.
    86. Faulds, K., et al., SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst, 2004. 129(7): p. 567-568.
    87. Jackowska, K. and P. Krysinski, New trends in the electrochemical sensing of dopamine. Analytical and bioanalytical chemistry, 2013. 405(11): p. 3753-3771.
    88. Salimi, A., H. MamKhezri, and R. Hallaj, Simultaneous determination of ascorbic acid, uric acid and neurotransmitters with a carbon ceramic electrode prepared by sol–gel technique. Talanta, 2006. 70(4): p. 823-832.
    89. Kaya, M. and M.r. Volkan, New approach for the surface enhanced resonance Raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid. Analytical chemistry, 2012. 84(18): p. 7729-7735.
    90. Ren, W., C. Zhu, and E. Wang, Enhanced sensitivity of a direct SERS technique for Hg 2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale, 2012. 4(19): p. 5902-5909.
    91. Zheng, G., et al., Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chemical Communications, 2015. 51(22): p. 4572-4575.
    92. Rochefort, A. and J.D. Wuest, Interaction of substituted aromatic compounds with graphene. Langmuir, 2008. 25(1): p. 210-215.
    93. Ren, H., et al., Competitive adsorption of dopamine and rhodamine 6G on the surface of graphene oxide. ACS applied materials & interfaces, 2014. 6(4): p. 2459-2470.
    94. Kaufmann, W., Elektrodynamische Eigentümlichkeiten leitender Gase. Annalen der Physik, 1900. 307(5): p. 158-178.
    95. Jensen, L. and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    96. Uehara, Y. and S. Ushioda, Single molecule spectrum of rhodamine 6G on highly oriented pyrolytic graphite. Applied Physics Letters, 2005. 86(18): p. 181905.
    97. Wang, P., et al., Ultra‐Sensitive Graphene‐Plasmonic Hybrid Platform for Label‐Free Detection. Advanced Materials, 2013. 25(35): p. 4918-4924.
    98. Yang, R., et al., Carbon Nanotube-Quenched Fluorescent Oligonucleotides: Probes that Fluoresce upon Hybridization. Journal of the American Chemical Society, 2008. 130(26): p. 8351-8358.
    99. Ling, X., et al., Probing the Effect of Molecular Orientation on the Intensity of Chemical Enhancement Using Graphene‐Enhanced Raman Spectroscopy. Small, 2012. 8(9): p. 1365-1372.
    100. Moulder, J.F., J. Chastain, and R.C. King, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. 1995: Physical Electronics Eden Prairie, MN.
    101. Hildebrandt, P. and M. Stockburger, Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. The Journal of Physical Chemistry, 1984. 88(24): p. 5935-5944.
    102. Que, R., et al., Highly Reproducible Surface‐Enhanced Raman Scattering on a Capillarity‐Assisted Gold Nanoparticle Assembly. Advanced Functional Materials, 2011. 21(17): p. 3337-3343.
    103. Huang, T. and X.-H.N. Xu, Synthesis and characterization of tunable rainbow colored colloidal silver nanoparticles using single-nanoparticle plasmonic microscopy and spectroscopy. Journal of materials chemistry, 2010. 20(44): p. 9867-9876.
    104. Wang, R., et al., Microplasma-Assisted Growth of Colloidal Silver Nanoparticles for Enhanced Antibacterial Activity. Plasma Processes and Polymers, 2014. 11(1): p. 44-51.
    105. Paredes, J., et al., Graphene oxide dispersions in organic solvents. Langmuir, 2008. 24(19): p. 10560-10564.
    106. Li, D., et al., Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology, 2008. 3(2): p. 101-105.
    107. Benz, F., et al., SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape. The Journal of Physical Chemistry Letters, 2016: p. 2264-2269.
    108. Mulvaney, P., Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996. 12(3): p. 788-800.
    109. Li, J. and C.y. Liu, Ag/graphene heterostructures: synthesis, characterization and optical properties. European Journal of Inorganic Chemistry, 2010. 2010(8): p. 1244-1248.
    110. Tang, X.-Z., et al., Growth of silver nanocrystals on graphene by simultaneous reduction of graphene oxide and silver ions with a rapid and efficient one-step approach. Chemical Communications, 2011. 47(11): p. 3084-3086.
    111. Sun, S. and P. Wu, Competitive surface-enhanced Raman scattering effects in noble metal nanoparticle-decorated graphene sheets. Physical Chemistry Chemical Physics, 2011. 13(47): p. 21116-21120.
    112. Su, S., et al., Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS applied materials & interfaces, 2014. 6(21): p. 18735-18741.
    113. Ding, G., et al., Graphene oxide-silver nanocomposite as SERS substrate for dye detection: Effects of silver loading amount and composite dosage. Applied Surface Science, 2015. 345: p. 310-318.
    114. Ding, X., et al., Highly sensitive SERS detection of Hg2+ ions in aqueous media using gold nanoparticles/graphene heterojunctions. ACS Appl Mater Interfaces, 2013. 5(15): p. 7072-8.
    115. Fan, W., et al., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851.
    116. Li, Y., et al., A facile fabrication of large-scale reduced graphene oxide-silver nanoparticle hybrid film as a highly active surface-enhanced Raman scattering substrate. Journal of Materials Chemistry C, 2015. 3(16): p. 4126-4133.
    117. Du, Y., et al., Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection. Journal of Materials Chemistry C, 2014. 2(23): p. 4683-4691.
    118. LiangáFu, W., S. JunáZhen, and C. ZhiáHuang, One-pot green synthesis of graphene oxide/gold nanocomposites as SERS substrates for malachite green detection. Analyst, 2013. 138(10): p. 3075-3081.
    119. Fan, Z., R. Kanchanapally, and P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. The Journal of Physical Chemistry Letters, 2013. 4(21): p. 3813-3818.
    120. Zhou, Y., et al., Graphene–silver nanohybrids for ultrasensitive surface enhanced Raman spectroscopy: size dependence of silver nanoparticles. Journal of Materials Chemistry C, 2014. 2(33): p. 6850-6858.
    121. Li, M., et al., Detection of Adenosine Triphosphate with an Aptamer Biosensor Based on Surface-Enhanced Raman Scattering. Analytical Chemistry, 2012. 84(6): p. 2837-2842.
    122. Kamali, K.Z., et al., Silver@ graphene oxide nanocomposite-based optical sensor platform for biomolecules. RSC Advances, 2015. 5(23): p. 17809-17816.
    123. Kaur, B., et al., Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 97-106.
    124. Liu, S., et al., Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. Journal of Electroanalytical Chemistry, 2012. 672: p. 40-44.
    125. Zhu, W., et al., Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. Colloids and Surfaces B: Biointerfaces, 2013. 111: p. 321-326.
    126. Palanisamy, S., et al., Surface enhanced Raman scattering-active worm-like Ag clusters for sensitive and selective detection of dopamine. Analytical Methods, 2015. 7(8): p. 3438-3447.
    127. Luo, Y., et al., SERS Detection of Dopamine Using Label-Free Acridine Red as Molecular Probe in Reduced Graphene Oxide/Silver Nanotriangle Sol Substrate. Nanoscale Research Letters, 2015. 10(1): p. 230.
    128. Wang, P., et al., Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure. Analytical chemistry, 2015. 87(20): p. 10255-10261.
    129. Wightman, R.M., L.J. May, and A.C. Michael, Detection of dopamine dynamics in the brain. Analytical Chemistry, 1988. 60(13): p. 769A-793A.
    130. Le Ru, E., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    131. Liang, X., et al., Tuning plasmonic and chemical enhancement for SERS detection on graphene-based Au hybrids. Nanoscale, 2015.
    132. Cai, W., et al., Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science, 1998. 406(1): p. 9-22.

    QR CODE