簡易檢索 / 詳目顯示

研究生: 莊閔智
MIN-JHIH CHUANG
論文名稱: AISI1050中碳鋼表面被覆多元合金之微結構分析與耐磨耗研究
A Study of Microstructure and Wear Performance on AISI 1050 Clad with Multicomponent Alloy
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
Hon So
呂道揆
Daw-Kwei Leu
曾垂拱
Chwei-Goong Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 105
中文關鍵詞: 多元合金臨場被覆
外文關鍵詞: multicomponent alloy, in-situ, clad
相關次數: 點閱:194下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要探討不同合金元素種類與數目對於AISI 1050中碳鋼表面被覆多元合金被覆層之顯微結構與磨耗行為的影響。並找出影響耐磨耗能力的主要關鍵,以作為AISI 1050中碳鋼被覆多元合金的依據。

實驗結果顯示,這四種多元合金被覆層(NiCrCoAlTi、NiCrCoAl
TiSi、NiCrCoAlTiW、NiCrCoAlTiMo)均會在基地臨場(in-situ)合成TiC碳化物。而NiCrCoAlTi被覆層內,基地則有條狀結構的形成;添加矽元素後,會從基地內晶出葉脈狀強化相;添加鎢和鉬元素後,均會在晶界中發現共晶的強化相。

磨耗實驗結果發現,NiCrCoAlTi被覆層和添加Si、W、Mo的NiCrCoAlTi被覆層均可以有效地改善中碳鋼的耐磨耗能力。其中以NiCrCoAlTiSi被覆層的耐磨耗性為佳,這是因為NiCrCoAlTiSi被覆層內存在有機械互鎖能力較佳的葉脈狀強化相,使其可有效的保護摩擦表面,導致耐磨耗能力上升。


In this thesis, different multicomponent alloys were cladded on the surface of AISI 1050 steel by gas tungsten arc welding (GTAW). The microstructure and tribological properties of the cladding layers were investigated. Additionally, the major factors that influence wear performance of the clad layers were found out.
Experimental results show that the TiC particles are synthesized in-situ in the NiCrCoAlTi, NiCrCoAlTiSi, NiCrCoAlTiW and NiCrCoAlTiMo multicomponent clad layers. The matrix of NiCrCoAlTi clad layer comprises a strip structure. The addition of Si element results in the appearance of vein-shaped reinforcement in the matrix. The additions of W and Mo elements result in the formation of the eutectic precipitate in the grain boundary
The wear test results indicate that the wear performance of all multicomponent clad layers exceeds that of the AISI 1050 steel. The vein-shaped reinforcement in the NiCrCoAlTiSi clad layer provides strong mechanical interlocking, which can protect the rubbing surface. Hence, the NiCrCoAlTiSi clad layer has superior wear performance than the others.

中文摘要……………………………………………………………Ⅰ 英文摘要……………………………………………………………Ⅱ 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 表索引………………………………………………………………VI 圖索引………………………………………………………………VII 第一章 前 言……………………………………………………1 第二章 文獻回顧…………………………………………………3 2-1 表面被覆技術之介紹………………………………3 2-2 惰氣鎢極電弧銲被覆的特點………………………4 2-3 熔融銲接的凝固特徵與形態………………………5 2-3-1顯微結構………………………………………5 2-3-2銲道外觀形態…………………………………6 2-4 多元合金系統………………………………………6 2-4-1多元合金之發展…………………………………………6 2-4-2多元合金之相關研究……………………………………7 2-4-3添加金屬元素在多元合金之相關研究………8 2-5被覆層強化機構………………………………………………9 2-6 磨耗機構……………………………………………11 2-7 摩擦理論………………………………………………14 第三章 實驗方法與步驟…………………………………………16 3-1 實驗步驟……………………………………………16 3-2 試片製作……………………………………………16 3-2-1基材的製作………………………………………16 3-2-2熔填材料的成份比例……………………………16 3-2-3被覆材料的製作……………………………………17 3-2-4磨耗試片的製作……………………………………17 3-3 氬銲被覆方法………………………………………18 3-3-1被覆試片的校正………………………………… 18 3-3-2氬銲被覆參數…………………………………… 18 3-4 被覆層微硬度之量測…………………………………19 3-5 被覆層顯微組織的觀察與成份分析…………………19 3-6 磨耗試驗………………………………………………20 3-6-1磨耗試驗之條件………………………………… 20 3-6-2磨耗量的量測與計算…………………………… 20 3-6-3磨耗表面的觀察………………………………… 22 3-6-4磨耗及分析儀器設備之介紹…………………… 22 3-6-4-1分析儀器之介紹………………………………22 3-6-4-2磨耗試驗之儀器…………………………………23 第四章 結果與討論…………………………………24 4-1 被覆層顯微組織與成份分析………………………24 4-2被覆層之X-ray分析…………………………………30 4-3多元合金添加稀土元素對被覆層硬度分佈之影響…31 4-4不同被覆層的磨耗行為分析…………………………31 4-4-1 AISI1050中碳鋼基材的耐磨耗能力評估………32 4-4-2 AISI1050中碳鋼基材的磨耗表面分析…………32 4-4-3多元合金被覆層的耐磨耗能力評估……………34 4-4-4多元合金被覆層的磨耗表面分析……………… 35 第五章 結論與建議………………………………………………40 5-1 結論……………………………………………………40 5-2 建議……………………………………………………41 參考文獻……………………………………………………………42

1. P.K.Datta﹐J.S.Gray﹐K.N.Strafford﹐“Surface Engineering Practice”﹐New York : Ellis Horwood﹐1990.
2. K.Holmberg﹐A.Matthews﹐Coatings tribology﹐Amsterdam﹐Elservier﹐1994.
3. J.W.Giachino﹐“Welding Skills and Practices”﹐1986.
4. G.B.Kenneth﹐“Surface Engineering for Wear Resistance ”.
5. J.F.Lancaster﹐Metallurgy of Weldiing﹐London﹐Chapman&Hall﹐1993.
6. Jien-Wei Yeh﹐Swe-Kai Chen﹐Su-Jien Lin﹐Jon-Yiew Gan﹐TsungShune Chin﹐Tao-Tung Shun﹐Chun-Huei Tsau﹐and Shou-Yi Chang﹐“Nanostructured high-Entropy Alloys with Multiple Principal Elements:Novel Alloy Design Concepts and Outcomes”﹐Advanced Engineering Materials﹐n5﹐2004﹐299-303.
7. J.W. Yeh﹐S.K Chen﹐J.Y. Gan﹐S.J. Lin﹐T.S. chin﹐T.T. Shun﹐C.H. Tsau﹐S.Y. Chang﹐Formation of simple crystal structures in CuCoNi
CrAlFeTiV alloys with multiprincipal metallic elements﹐Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science﹐v35 A﹐n8﹐2004﹐2533-2536.
8. Y.J. Zhou﹐Y.Zhang﹐Y.L. Wang﹐G.L. Chen﹐Microstructure and compressive properties of multicomponent Alx
high-entropy﹐Materials Science and Engineering A﹐v 454-455﹐2007﹐260-265.
9. X.F Wang﹐Y. zhang﹐Y. Qiao﹐Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys﹐Intermetallics﹐v 15﹐n 3﹐2007﹐357-362.
10. Y.P. Wang﹐B.S. Li﹐M.X. Ren﹐C. Yang﹐H.Z. Fu﹐Microstructure and compressive properties of AlCrFeCoNi high entropy alloy﹐Materials Science and Engineering﹐v 491, n 1-2,2008﹐154-158.
11. L.H. Wen﹐H.C. Kou﹐J.S. Li﹐H. Chang﹐X.Y. Xue﹐L. Zhou﹐Effect of aging temperature on microstructrue and properties of AlCoCrCu
FeNi high entropy alloy ﹐Intermetallics﹐v 17, n 4, 2008﹐266-269.
12. Zhang. Yong ﹐Wang. Xuefei ﹐Wang. Yanli ﹐Chen. Guoliang ﹐Effect of compoment substitution on the microstructure and mechanical properties of MCoCrFeNiTix (M = Cu, Al) solid-solution alloys﹐Rare Metals﹐v 27﹐n 6﹐2008﹐627-631.
13. Jien-Min Wu﹐Su-Jien Lin﹐Jien-Wei Yeh﹐Swe-Kai Chen﹐Y.S. Huang﹐Adhesive wear behavior of AlxCoCrCuFeNi high entropy alloys as a function of aluminum content﹐Wear﹐v 261﹐n5-6﹐2006﹐p513-519.
14. Jiang Xu﹐Wen Jin Liu﹐Yide Kan﹐ Min Lin Zhong﹐Microstructure and wear properties of laser cladding Ti-Al-Fe-B coatings on AA2024
aluminum alloy﹐Materials and Design ﹐v 27, n 5﹐2005﹐405-410.
15. Y.C. Lin﹐Y.H. Cho﹐Elucidating the microstructure and wear behavior for multicomponent clad layer by in situ synthesis﹐Surface & Coatings Technology, v 202, n 19﹐2008﹐4666–4672.
16. B.S. Li﹐Y.P.Wang﹐M.X. Ren﹐C. Yang﹐H.Z. Fu﹐Effects of Mn、Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy﹐Materials Science and Engineering ﹐v 498, n 1-2, 2008﹐482-486.
17. Y.J. Zhou﹐Y. Zhang ﹐F.J. Wang﹐Y.L. Wang ﹐G.L. Chen﹐Effect of Cu addition on the microstructure and mechanical properties of solid-solution alloy﹐Journal of Alloys and Compounds﹐v 466, n 1-2, 2007﹐201–204.
18. D.W. Zhang﹐T.C. Lei﹐F.J. Zhou﹐“Laser cladding stainless steel with Ni- for improved wear performance”﹐WEAR﹐v 250-251, n 2, 2001, 1372-1376.
19. 李明奇﹐製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立臺灣科技大學碩士論文﹐民國88年6月.
20. 劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚﹐工程材料科學﹐全華科技圖書股份有限公司﹐1996.
21. G.E Dieter﹐Mechanical metallurgy﹐London﹐McGrew-Hill﹐1988.
22. 莊東漢﹐材料破損分析﹐五南圖書出版公司.
23. K.H. Zum Gahr﹐“Microstructure and wear of Material”﹐Tribolagy series﹐Vol.10﹐1987.
24. A.R. Lansdown﹐&A.L. Price﹐“Material to resist wear” ﹐1986.
25. E.Rabinowicz﹐“An Adhesive Wear Model Based on Variations in Strength Values” ﹐Wear﹐Vol.63﹐1980﹐175-181.
26. A.F. Smith﹐“The Influence of surface Oxidation and Sliding Speed on the Unlubricated Wear of 316 stainless steel at low load”﹐Wear﹐Vol105﹐1985﹐91-107.
27. N.P. Suh﹐“The Delamination Theory of Wear”﹐Wear﹐Vol.25﹐1973﹐111-124.
28. Bhushan﹐Bharat﹐Handbook of Tribology﹐McGraw-Hill﹐USA﹐1991.
29. Y.C.Lin﹐S.W. Wang﹐“Wear behavior of ceramic powder cladding on an S50C steel surface”﹐Tribology International﹐v 36, n 1﹐2003﹐1-9.
30. X.H. Wang﹐S.L. Song﹐S.Y. Ou﹐D. Zou﹐“Characterization of in situ synthesized TiC particle reinforced Fe-based composite coating produced by multi-pass overlapping GATW melting process“﹐Surface and Coatings Technology﹐v 201, n 12﹐2007﹐5899-5905.
31. X.H. Wang ﹐M. Zhang ﹐X.M. Liu﹐S.Y. Qu﹐Z.D. Zou﹐ “Microstructure and wear properties of TiC/FeCrBSi surface composite coating prepared by laser cladding“﹐Surface&Coating Technology﹐v 202, n 15﹐2008﹐3600-3606.
32. Y.C. Lin﹐Y.H Cho﹐“Elucidating the microstructural and tribological characteristics of NiCrAlCoCu and NiCrAlCoMo multicompoent alloy clad layer synthesized in situ”﹐Surface&Coating Technology﹐v 203, n 12 ﹐2009﹐1694-1701.
33.王世衛﹐“陶瓷粉末被覆於中碳鋼表面的微觀結構與磨耗行為研究”﹐國立臺灣科技大學機械工程系博士學位論文﹐2003.

QR CODE