簡易檢索 / 詳目顯示

研究生: 洪宗甫
Tsung-fu Hung
論文名稱: 香芹酚在結紮線誘導大白鼠實驗性牙周炎之保護作用
The Protective Effect of Carvacrol on the Ligation-induced Experimental Periodontitis in SD Rats
指導教授: 洪伯達
Po-da Hong
傅鍔
Earl Fu
口試委員: 高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 53
中文關鍵詞: 香芹酚牙周炎大白鼠炎症反應
外文關鍵詞: carvacrol, periodontitis, rat, inflammation
相關次數: 點閱:184下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

牙周病是一種由牙菌斑引發之慢性炎症反應所造成的牙周組織破壞,其中包含牙周韌帶以及齒槽骨。由於牙周組織破壞,牙菌斑便會持續累積在牙齦內側而成為牙周囊袋並造成牙齦炎更為嚴重進而發展為持續性牙周炎。 因為齒槽骨破壞的不可逆性質,透過控制口腔衛生預防牙齦炎便是減少牙周病爆發的最佳策略。香芹酚是到手香葉片的主要揮發性成份;在台灣,到手香通常使用於減緩局部發炎與疼痛。香芹酚俱有多種活性,其中,抗發炎、抗微生物以及抗氧化作用已經有相關研究。然而,香芹酚分子在生物體內的作用機智尚未明瞭,且長期的毒理學研究亦尚未建立,因此鮮少有香芹酚的實際應用。在這篇研究中,除了透過顯微斷層掃描以及病理組織的評估分析,並且經由相關炎症反應介質的信使核糖核酸表現量,以及相關蛋白質活性評估炎症反應的強度,來展示腹腔注射投與不同劑量之香芹酚對於大鼠牙周結紮線所引發之實驗性牙周炎的保護作用。研究結果顯示,隨著香芹酚投與劑量的增加,於牙周結紮線所引發的實驗性炎症反應會趨於減緩。在投與香芹酚的兩個實驗組中,發炎前細胞介質的信使核糖核酸表現量以及巨噬細胞特異的九號基質金屬蛋白的活性有顯著的減少,並有統計上的差異。而在組織形態上,在牙周結紮線周圍之齒槽骨流失的程度皆有顯著地減少。總體而言,我們對於香芹酚在牙周結紮線誘導牙周炎之影響有了非常初步的瞭解,然而,對於香芹酚透過抗微生物活性而影響牙周炎程度的相關研究卻尚未進行;在實際應用上,為減少未知毒性的疑慮,透過不同的投藥途徑效果亦是未來研究的方向之一。此外,透過此研究,香芹酚在牙周炎的相關應用方向應可重新檢視與修正。


]Periodontal disease is a chronic inflammatory response to dental plaque with irreversible periodontal destruction including the periodontal ligament and the alveolar bone. Because of the destruction, a gingival pocket is formed pathologically with subgingival plaque accumulation constantly that makes gingivitis more intensive and a periodontitis established consequently. Because of irreversible property of the destruction of alveolar bone, prophylaxis of gingivitis with controlled oral hygiene is the prime strategy to reduce the burst of periodontal disease. Carvacrol is the main constituent of the essential oil of Plectranthus amboinicus that has been utilized for pain relief and inflammation control in Taiwan. The diverse activities of carvacrol including anti-inflammatory, anti-microorganism, and antioxidant properties have been investigated. However, because the molecular mechanism of these activities and long-term toxicity of carvacrol are not clear and estimated, the practical use of carvacrol is still rare. In this study, we demonstrate a protective activity of carvacrol on the animal model of ligation-induced periodontitis through not only the analysis of morphology by micro-CT and histometric assessment, but also the inspection of severity of inflammation by mRNA expression of related proteins and enzyme activities. The result of this study exhibits the dose-dependent intensity of anti-inflammatory activity of carvacrol against ligation-induced activity. The mRNA expression of pro-inflammatory cytokines and the activity of macrophage-specific MMP9 were significantly reduced in the carvacrol-treated group. Morphologically, the level periodontitis-induced alveolar bone loss around ligation sites was decreased. In conclusion, the effect of carvacrol on ligation-induced periodontitis has been discovered to a limited extent, hence, more investigation will be needed in the anti-microorganism properties and delivery route of carvacrol. Moreover, the orientation of carvacrol application on periodontal disease should be reinspected and revised.

Abstract I Acknowledgement II List of Contents III List of Figures V List of Tables V Chapter 1 The Anatomy of Teeth and Periodontal Tissue 1 Tooth 1 Periodontium 1 Gingiva 4 Chapter 2 Periodontal Disease 5 Progression of Periodontal Disease 5 Mechanism of Periodontal Disease and Plaque Formation 5 Risk Factors 7 Treatment and Prophylaxis of Periodontal Disease 7 Periodontal Disease Related Cytokines and Enzymes 8 Pro-inflammation Cytokines 8 Matrix metalloproteinases (MMPs) 9 Chapter 3 Carvacrol from Plectranthus amboinicus 10 Plectranthus amboinicus 10 Carvacrol 10 Structure and Isoform 10 Distribution 11 Metabolism and Toxicity 11 Diverse Activity of Carvacrol 12 Chapter 4 Materials and Methods 14 Instrument, Medication and Reagents 14 Instruments 14 Medical and Surgical Materials 14 Reagent Kits 15 Experimental Design 16 Analysis of mRNA and Protein Expression 20 Chapter 5 Results 22 Analysis of Morphology 22 Digital Radiography 22 Histometric Measurement 27 Analysis of mRNA and Protein 29 RT-PCR 29 Zymography 31 Chapter 6 Discussion and Further Works 32 Carvacrol Concentration of the Ligation Sites 32 Ligation-induced Periodontitis 32 Morphology Evaluation by Micro-CT 33 The Result Conflict Between Radiography and Micro-CT 33 Histometric Measurement 33 Pro-inflammatory Cytokines 34 Activity of iNOS 34 Activity of MMPs 34 Toxicity of Carvacrol 35 Administration Route of Carvacrol 35 In Vitro Study of Antibacterial Activity 36 Chapter 7 Conclusion 37 Reference 38

1. Botelho, M.A., et al., Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Brazilian journal of medical and biological research Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica, 2007. 40(3): p. 349-56.
2. Gorrel, C., Veterinary dentistry for the general practitioner2004: Sauders, Elservier Science.
3. Richard A. Goldsby, T.J.K., Barbara A. Osborne, Janis Kuby, Immunology. Fifth ed2005: W. H. Freeman and Company.
4. Jan Lindhe, N.P.L., Thorkild Karring, Tord Berglundh, William V. Giannobile, Mariano Sanz, Clinical Periodontology and Implant Dentistry: Basic Concept. Fifth ed. Vol. 1. 2008: Blackwell, Munksgaard.
5. Murthy, P., K. Ramalakshmi, and P. Srinivas, Fungitoxic activity of Indian borage (Plectranthus amboinicus) volatiles. Food Chemistry, 2009. 114(3): p. 1014-1018.
6. De Vincenzi, M., et al., Constituents of aromatic plants: carvacrol. Fitoterapia, 2004. 75(7-8): p. 801-4.
7. Ultee, A., M.H. Bennik, and R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol, 2002. 68(4): p. 1561-8.
8. B. K. B. Berkovitz, G.R.H., B. J. Moxham, Oral Anotomy, Histology and Embryology. Fourth ed2009: Mosby, Elsevier.
9. Chandel, N.S., et al., Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin. Journal of immunology, 2000. 165(2): p. 1013-21.
10. Kwan Tat, S., et al., IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology. Cytokine & growth factor reviews, 2004. 15(1): p. 49-60.
11. Raisz, L.G., Pathogenesis of osteoporosis: concepts, conflicts, and prospects. The Journal of clinical investigation, 2005. 115(12): p. 3318-25.
12. Napimoga, M.H., et al., Cannabidiol decreases bone resorption by inhibiting RANK/RANKL expression and pro-inflammatory cytokines during experimental periodontitis in rats. International Immunopharmacology, 2009. 9(2): p. 216-22.
13. Suzuki, T., et al., Expression of inducible nitric oxide synthase and heat shock proteins in periapical inflammatory lesions. Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology, 2002. 31(8): p. 488-93.
14. Kinane, D.F. and D.F. Lappin, Clinical, pathological and immunological aspects of periodontal disease. Acta odontologica Scandinavica, 2001. 59(3): p. 154-60.
15. Parks, W.C. and S.D. Shapiro, Matrix metalloproteinases in lung biology. Respiratory research, 2001. 2(1): p. 10-9.
16. Galis, Z.S., et al., Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. The Journal of clinical investigation, 1994. 94(6): p. 2493-503.
17. Goncalves, L.D., et al., Expression of metalloproteinases and their tissue inhibitors in inflamed gingival biopsies. J Periodont Res, 2008. 43(5): p. 570-7.
18. Chang, J.M., et al., Potential Use of Plectranthus amboinicus in the Treatment of Rheumatoid Arthritis. Evidence-based complementary and alternative medicine : eCAM, 2007.
19. Lukhoba, C.W., M.S. Simmonds, and A.J. Paton, Plectranthus: a review of ethnobotanical uses. Journal of Ethnopharmacology, 2006. 103(1): p. 1-24.
20. Chang, S.L., et al., Allergic contact dermatitis to Plectranthus amboinicus masquerading as chronic leg ulcer. Contact Derm, 2005. 53(6): p. 356-7.
21. Gurgel, A.P., et al., In vivo study of the anti-inflammatory and antitumor activities of leaves from Plectranthus amboinicus (Lour.) Spreng (Lamiaceae). Journal of Ethnopharmacology, 2009. 125(2): p. 361-3.
22. Vera, R., J.M. Mondon, and J.C. Pieribattesti, Chemical Composition of The Essential Oil and Aqueous Extract of Plectranthus amboinicus. Planta Med, 1993. 59(2): p. 182-3.
23. Hotta, M., et al., Carvacrol, a component of thyme oil, activates PPARalpha and gamma and suppresses COX-2 expression. J Lipid Res, 2010. 51(1): p. 132-9.
24. Botelho, M.A., et al., Protective effect of locally applied carvacrol gel on ligature-induced periodontitis in rats: a tapping mode AFM study. Phytotherapy research : PTR, 2009. 23(10): p. 1439-48.
25. Landa, P., et al., In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E(2) biosynthesis. Arch Pharm Res, 2009. 32(1): p. 75-8.
26. Botelho, M.A., et al., Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res, 2007. 40(3): p. 349-56.
27. Kim, D.K., et al., High-throughput gene expression analysis of intestinal intraepithelial lymphocytes after oral feeding of carvacrol, cinnamaldehyde, or Capsicum oleoresin. Poult Sci, 2010. 89(1): p. 68-81.
28. Ben Arfa, A., et al., Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol, 2006. 43(2): p. 149-54.
29. Chen, F., et al., Antioxidant and antibacterial activities of eugenol and carvacrol-grafted chitosan nanoparticles. Biotechnol Bioeng, 2009. 104(1): p. 30-9.
30. Aristatile, B., et al., Effect of carvacrol on hepatic marker enzymes and antioxidant status in D-galactosamine-induced hepatotoxicity in rats. Fundam Clin Pharmacol, 2009. 23(6): p. 757-65.
31. Undeğer, U., et al., Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem Toxicol, 2009. 47(8): p. 2037-43.
32. Slamenova, D., et al., Carvacrol given to rats in drinking water reduces the level of DNA lesions induced in freshly isolated hepatocytes and testicular cells by H(2)O(2). Neoplasma, 2008. 55(5): p. 394-9.
33. Mastelic, J., et al., Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. Journal of agricultural and food chemistry, 2008. 56(11): p. 3989-96.
34. Melo, F.H., et al., Anxiolytic-like effect of Carvacrol (5-isopropyl-2-methylphenol) in mice: involvement with GABAergic transmission. Fundam Clin Pharmacol, 2010. 24(4): p. 437-43.
35. Monzote, L., et al., Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol Appl Pharmacol, 2009. 240(3): p. 337-47.
36. Azirak, S. and E. Rencuzogullari, The in vivo genotoxic effects of carvacrol and thymol in rat bone marrow cells. Environ Toxicol, 2008. 23(6): p. 728-35.
37. Filoche, S.K., K. Soma, and C.H. Sissons, Antimicrobial effects of essential oils in combination with chlorhexidine digluconate. Oral microbiology and immunology, 2005. 20(4): p. 221-5.
38. K.-W. Lee, H.E.a.A.C.B., Essential Oils in Broiler Nutrition. International Journal of Poultry Science, 2004. 3(12): p. 15.
39. Botelho, M.A., et al., Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis. Phytotherapy research : PTR, 2008. 22(4): p. 442-9.
40. Chao, L.K., et al., Study on the antiinflammatory activity of essential oil from leaves of Cinnamomum osmophloeum. Journal of agricultural and food chemistry, 2005. 53(18): p. 7274-8.
41. Rattanachaikunsopon, P. and P. Phumkhachorn, Assessment of factors influencing antimicrobial activity of carvacrol and cymene against Vibrio cholerae in food. Journal of bioscience and bioengineering, 2010. 110(5): p. 614-9.
42. Veldhuizen, E.J., et al., Low temperature and binding to food components inhibit the antibacterial activity of carvacrol against Listeria monocytogenes in steak tartare. Journal of food protection, 2007. 70(9): p. 2127-32.
43. Burt, S.A., et al., Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157:H7 by addition of food stabilizers. Journal of food protection, 2005. 68(5): p. 919-26.
44. Ultee, A., M.H. Bennik, and R. Moezelaar, The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and environmental microbiology, 2002. 68(4): p. 1561-8.
45. Ultee, A., E.P. Kets, and E.J. Smid, Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Applied and environmental microbiology, 1999. 65(10): p. 4606-10.
46. Aeschbach, R., et al., Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 1994. 32(1): p. 31-6.
47. Ronis, M.J., et al., Alcoholic liver disease in rats fed ethanol as part of oral or intragastric low-carbohydrate liquid diets. Experimental biology and medicine, 2004. 229(4): p. 351-60.
48. Facchinetti, F., et al., Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia, 2003. 41(2): p. 161-8.
49. Chin, Y.T., et al., Expression and bioactivities of endothelin-1 in gingiva during cyclosporine A treatment. Journal of periodontal research, 2009. 44(1): p. 35-42.
50. Yamashita, M., Hyperbaric oxygen treatment attenuates cytokine induction after massive hemorrhage. American journal of physiology. Endocrinology and metabolism, 2000. 278(5): p. E811-6.
51. Dumitrescu, A.L., et al., A model of periodontitis in the rat: effect of lipopolysaccharide on bone resorption, osteoclast activity, and local peptidergic innervation. Journal of clinical periodontology, 2004. 31(8): p. 596-603.
52. Vardar-Sengul, S., et al., The effects of selective COX-2 inhibitor/celecoxib and omega-3 fatty acid on matrix metalloproteinases, TIMP-1, and laminin-5gamma2-chain immunolocalization in experimental periodontitis. Journal of periodontology, 2008. 79(10): p. 1934-41.
53. Cai, X., et al., Protective effects of baicalin on ligature-induced periodontitis in rats. Journal of periodontal research, 2008. 43(1): p. 14-21.
54. Graves, D.T., et al., The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. Journal of clinical periodontology, 2008. 35(2): p. 89-105.
55. Lohinai, Z., et al., Protective effects of mercaptoethylguanidine, a selective inhibitor of inducible nitric oxide synthase, in ligature-induced periodontitis in the rat. British journal of pharmacology, 1998. 123(3): p. 353-60.
56. Liu, R., et al., P. gingivalis and E. coli lipopolysaccharides exhibit different systemic but similar local induction of inflammatory markers. Journal of periodontology, 2008. 79(7): p. 1241-7.
57. Garcia de Aquino, S., et al., Signaling pathways associated with the expression of inflammatory mediators activated during the course of two models of experimental periodontitis. Life sciences, 2009. 84(21-22): p. 745-54.
58. Liu, Y.C., U.H. Lerner, and Y.T. Teng, Cytokine responses against periodontal infection: protective and destructive roles. Periodontology 2000, 2010. 52(1): p. 163-206.
59. Graves, D.T. and D. Cochran, The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. Journal of periodontology, 2003. 74(3): p. 391-401.
60. Jiang, W.W., et al., Expression of iNOS in early injury in a rat model of small-for-size liver transplantation. Hepatobiliary & pancreatic diseases international : HBPD INT, 2009. 8(2): p. 146-51.
61. Dreier, R., et al., Pro-MMP-9 is a specific macrophage product and is activated by osteoarthritic chondrocytes via MMP-3 or a MT1-MMP/MMP-13 cascade. Experimental cell research, 2004. 297(2): p. 303-12.
62. Esparza, J., et al., Fibronectin upregulates gelatinase B (MMP-9) and induces coordinated expression of gelatinase A (MMP-2) and its activator MT1-MMP (MMP-14) by human T lymphocyte cell lines. A process repressed through RAS/MAP kinase signaling pathways. Blood, 1999. 94(8): p. 2754-66.
63. Kunta, J.R., et al., Effect of menthol and related terpenes on the percutaneous absorption of propranolol across excised hairless mouse skin. J Pharm Sci, 1997. 86(12): p. 1369-73.
64. Wang, Q., et al., In vitro evaluation of the activity of microencapsulated carvacrol against Escherichia coli with K88 pili. J Appl Microbiol, 2009. 107(6): p. 1781-8.

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE