簡易檢索 / 詳目顯示

研究生: Yosef Wakjira
Yosef Wakjira
論文名稱: 植牙中最佳紋形狀與種類之選擇及植物與骨骼界面之數學分析
SELECTION OF OPTIMUM THREAD SHAPE AND TYPE FOR DENTAL IMPLANT AND NUMERICAL ANALYSIS OF INTERFACE OF IMPLANT AND CORTICAL BONE
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 向四海
Su-Hai Hsiang
丘群
Chun Chiu
陳元方
Terry Yuan-Fang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 103
中文關鍵詞: 牙種植體螺紋形狀牙周韌帶有限元分析
外文關鍵詞: Dental Implant, (FEA) Finite Element Analysis, Thread shape, Periodontal Ligament
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當今牙科治療中植牙的螺紋是一重要關鍵。本研究旨在:i- 確定螺紋的最佳設計;ii- 研究不同種植體螺紋模型對骨植入物 - 界面應力分佈的影響;iii- 研究靜態和其他植入行為。另一方面,利用數學建模評估皮質骨和種植體(PDL)界面中應力分佈的影響。
    本研究主要利用機械設計開發新型的植入模型。其目標為藉由FEA達到優化設計。在第一部分中,考慮了五種具有不同螺紋輪廓設計的植入物,並且使用FEA評估了皮質骨和鬆質骨中的應力分佈模式。 尺寸符合牙科植入物的商業螺紋配置標準。對於界面 (inter-face),PDL被設計為具有0.1mm厚度尺寸。3D CREO Parametric V5和ABAQUS V20主要使用於植入物以及界面3D建模。
    有限元分析的結果表明,Von Mises中的應力在植入物和界面中變得更加近中。 最大應力集中在皮質骨上並轉移到植入物的第一個螺紋。 模擬顯示在鬆質骨處觀察到最小應力,在植入物處觀察到最大應力。 使用不同的螺紋設計和各種骨整合條件不會影響支撐骨中的應力分佈模式。 在界面中,應力沿著載荷方向分佈。


    The choice of the thread structure of the implant plays a crucial role in the dental treatment. This study was undertaken to: i - Identify the optimum design of the thread, ii - Investigate the impacts of different implant thread models on bone implant-interface stress distribution, iii - Investigate Static and other behaviors of implants. On the Other hand, At the interface of the jawbone and roots of teeth, the effect of stress distribution in the interface of cortical bone and implant (PDL) is evaluated along with the numerical analysis.
    A full mechanical system design for a dental implant model was developed within the range of the study. The design was optimized using the FEA depending on the design strategic objectives. In the First part, five implants with different thread profile designs considered and the pattern of the stress distribution in cortical bone and Cancellous bone are evaluated using FEA. The dimensions were in according with the commercial thread configuration standards for dental implant. For the Interface, PDL is designed as a third party which has 0.1mm thickness dimension. The 3D CREO Parametric V5 software was used for implants as well as interface 3D modeling and Simulated in ABAQUS V2018 FEA Software. Applied load for both cases has a magnitude of 150N at 30o Angulation.
    The results from the FEA showed that the stress in Von Mises has become more mesiodistally both in the implants and in the Interface. Maximum stresses found concentrated at the cortical bone and transferred to the first thread of the implant. The Simulation shows that the least stresses were observed at the cancellous bone and maximum at the implant. The use of various thread designs and different conditions of osseointegration did not affect the patterns of stress distribution in the supporting bone. In the Interface the stresses are distributed in the direction of load is applied.

    ABSTRACT iii 摘要 iv ACKNOWLEDGEMENTS v List of Table ix List of Figure x CHAPTER 1 1 1 INTRODUCTION 1 1.1 Dental Implants 1 1.2 Overdentures and dental Implants 2 1.2.1 Surface Properties: Osseointegration and Implant 5 1.3 Implant Materials 5 1.3.1 Ceramic 6 1.3.2 Metals 8 1.3.3 Polymers 9 1.4 Implant Geometries 9 1.4.1 Implant Shape 9 1.4.2 Implant Size 10 1.4.3 Thread Profile 10 CHAPTER 2 13 2 BACKGROUND 13 2.1 Optimum Implant Thread Selection among different types of implants 13 2.2 Implant bone interface biomechanics 14 2.2.1 Occlusal forces in Osseo integrated Implants 14 2.2.2 Implant Force Transmission to Bone 14 2.2.3 External loads and transmission of forces 16 2.3 PDL - Periodontal Ligament 17 2.3.1 Periodontal ligament mechanical behavior 18 2.3.2 PDL's mechanical behavior experimental studies 19 2.4 Finite Element Analysis in Dentistry 24 2.5 Objectives of the study 26 CHAPTER 3 27 3 Materials and Method 27 3.1 Selection of Implants 27 3.1.1 Dental Implant System Design 27 3.1.2 Implant Design 28 3.1.3 Abutment Design 37 3.1.4 Methods & FEM procedures 37 3.2 Material Properties 39 3.2.1 Contact Body Definitions and Mesh Generation 40 3.2.2 Loads and boundary conditions 40 3.2.3 Bite force application 41 3.2.4 Boundary Condition and Load Applied 41 3.3 Interface – Periodontal ligament 42 3.3.1 Mathematical Analysis 43 3.3.2 Interface – FEA 53 CHAPTER 4 57 4 RESULTS AND DISCUSSION 57 4.1 Implant Selection 57 4.2 Interface 71 CHAPTER 5 78 5 CONCLUSION 78 References 80 Glossary 87

    1. Dhatrak P, Shirsat U, Sumanth S, Deshmukh V. Finite element analysis and experimental investigations on stress distribution of dental implants around implant-bone interface. Materials Today: Proceedings 2018; 5: 5641-5648.
    2. Arsalanloo Z, Telchi R, Osgouie KG, Biochemistry, Bioinformatics. Selection of optimum thread type in implants to achieve optimal biomechanical properties by using 3D finite element method. 2014; 4: 185.
    3. Warreth A, Ibieyou N, O'Leary RB, Cremonese M, Abdulrahim MJ. Dental implants: An overview. 2017; 44: 596-620.
    4. Al-Harbi FAJ, sciences m. Mandibular implant-supported overdentures: Prosthetic overview. 2018; 6: 2.
    5. Dental Implant - A Permanent Solution.
    6. Kevin M. Christ DMD. Dental Implants - What are dental Implants.
    7. Morgano SM, VanBlarcom CW, Ferro KJ, Bartlett DW. The history of The Glossary of Prosthodontic Terms. 2018; 119: 311-312.
    8. Fang J-H, An X, Jeong S-M, Choi B-HJ. Digital immediate denture: A clinical report. 2018; 119: 698-701.
    9. Tallarico M, Ortensi L, Martinolli M, Casucci A, Ferrari E, Malaguti G, Montanari M, Scrascia R, Vaccaro G, Venezia PJDj. Multicenter Retrospective Analysis of Implant Overdentures Delivered with Different Design and Attachment Systems: Results Between One and 17 Years of Follow-Up. 2018; 6: 71.
    10. Tolla DHD. Implant Supported Overdenture.
    11. M, HR Filho S, EJV LJ. Does the retention system influence the stability of implant-supported maxillary overdentures? A comparison with fixed and conventional dentures. 2019; 63: 47-51.
    12. H. Çimenoğlu ESK, C. Şener, and G. Göller, “İmplant Malzemesi Olarak Kullanılan Titanyum ve Alaşımlarının Yüzey Özelliklerinin İleri Tekniklerle Geliştirilmesi ve Ülke Koşullarında Ekonomik ve KaliteÜretim Parametrelerinin İncelenmesi”. Oct. 2008.
    13. Oshida Y, Tuna EB, Aktören O, Gençay KJIjoms. Dental implant systems. 2010; 11: 1580-1678.
    14. Luk NK, Wu VH, Liang BM, Chen Y, Yip KH, Smales RJ, Dentistry R. Mathematical analysis of occlusal rest design for cast removable partial dentures. 2007; 15: 29.
    15. Osman R, Swain MJM. A critical review of dental implant materials with an emphasis on titanium versus zirconia. 2015; 8: 932-958.
    16. Metal-Free Ceramic Dental Implants.
    17. Gökcen Röhlig B. The Use of Angulated Implants in the Maxillary Tuberosty Region. A 3-Dimensional Finite Element Analysis Study. 2004.
    18. Lin S, Shi S, LeGeros RZ, LeGeros JP. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant. 2000; 9: 53-60.
    19. Himmlova L, Dostálová Tj, Kácovský A, Konvickova SJ. Influence of implant length and diameter on stress distribution: a finite element analysis. 2004; 91: 20-25.
    20. Morris HF, Winkler S, Ochi S, Kanaan AJ. A new implant designed to maximize contact with trabecular bone: Survival to 18 months. 2001; 27: 164-173.
    21. Griffin TJ, Cheung WS. The use of short, wide implants in posterior areas with reduced bone height: a retrospective investigation. 2004; 92: 139-144.
    22. Li T, Hu K, Cheng L, Ding Y, Ding Y, Shao J, Kong LJ. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality–A 3D finite element analysis. 2011; 35: 446-456.
    23. Geramizadeh M, Katoozian H, Amid R, Kadkhodazadeh MJ, Surgeons M. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis. 2018; 44: 59-65.
    24. Sun Y, Kong L, Hu K, Xie C, Zhou H, Liu Y, Liu BJ, Surgery M. Selection of the implant transgingival height for optimal biomechanical properties: a three-dimensional finite element analysis. 2009; 47: 393-398.
    25. Vidyasagar L, Apse PJS. Dental implant design and biological effects on bone-implant interface. 2004; 6: 51-54.
    26. Kong L, Zhao Y, Hu K, Li D, Zhou H, Wu Z, Liu BJ. Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis. 2009; 40: 474-478.
    27. Eraslan O, İnan ÖJCoi. The effect of thread design on stress distribution in a solid screw implant: a 3D finite element analysis. 2010; 14: 411-416.
    28. Lee C-C, Lin S-C, Kang M-J, Wu S-W, Fu P-YJ. Effects of implant threads on the contact area and stress distribution of marginal bone. 2010; 5: 156-165.
    29. Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MHJJoor. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. 2002; 29: 565-574.
    30. Steigenga J, Al‐Shammari K, Misch C, Nociti Jr FH, Wang HLJJop. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. 2004; 75: 1233-1241.
    31. L. Kong et al. “Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis”. Advances in Engineering Software 2009; vol. 40, no. 7, pp. 474–478,.
    32. Faegh S, Chou H-Y, Müftu SJ, Croatia: InTech Publishing. Load transfer along the bone-implant interface and its effects on bone maintenance. 2011: 163-190.
    33. Şahin S, Cehreli MC, Yalçın EJJod. The influence of functional forces on the biomechanics of implant-supported prostheses—a review. 2002; 30: 271-282.
    34. Bonnet A, Postaire M, Lipinski PJ, Physics. Biomechanical study of mandible bone supporting a four-implant retained bridge: finite element analysis of the influence of bone anisotropy and foodstuff position. 2009; 31: 806-815.
    35. Hattori Y, Satoh C, Kunieda T, Endoh R, Hisamatsu H, Watanabe MJJob. Bite forces and their resultants during forceful intercuspal clenching in humans. 2009; 42: 1533-1538.
    36. Roehrle O, Saini H, Ackland DCJDM. Occlusal loading during biting from an experimental and simulation point of view. 2018; 34: 58-68.
    37. BG R. The use of angulated implants in the maxillary tuberosity region Dissertation. . (2004)
    38. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal EJ. The influence of occlusal loading location on stresses transferred to implant-supported prostheses and supporting bone: a three-dimensional finite element study. 2004; 91: 144-150.
    39. Lin C-L, Lin Y-H, Chang S-HJJob. Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using FEA and SED bone remodeling algorithm. 2010; 43: 644-651.
    40. MCr. Contemporary implant dentistry, . Elsevier, Canada 2008.
    41. Morgan M, James DJ. Force and moment distributions among osseointegrated dental implants. 1995; 28: 1103-1109.
    42. Brunski JB, Implants M. Biomaterials and biomechanics in dental implant design. 1988; 3.
    43. A. M. Hinson. “Periodontal health and the perception of treatment versus actual treatment needs based on NHANES 2003-2004,” Master’s Thesis, . 2017.
    44. Chu T-MG, Liu SS-Y, Babler WJ. Craniofacial Biology, Orthodontics, and Implants In: Proceedings of the Basic and Applied Bone Biology. Elsevier, 2014: 225-242.
    45. K. Noda YN, T. Oikawa, and A. Hirashita. “Tooth movement limited to periodontal ligament width using interrupted orthodontic force”, 2006.
    46. A. Caputo and W. Robert. “Force Generation and Reaction Within the Periodontium,” UCLA School of Dentistry.
    47. M. L. Jones JH, J. Middleton, J. Knox, and C. Volp,. “A Validated Finite Element Method Study of Orthodontic Tooth Movement in the Human Subject,”. Journal of Orthodontics, vol. 28, pp. 29-38, 2001.
    48. N. Yoshida YK, C. L. Peng, E. Tanaka, and K. Kobayashi, . In vivo measurement of the elastic modulus of the human periodontal ligament,. Medical engineering and physics, vol. 23, no. 8, pp. 567–572, 2001.
    49. Rees J, Jacobsen PJB. Elastic modulus of the periodontal ligament. 1997; 18: 995-999.
    50. Morita Y, Uchino M, Todo M, Matsushita Y, Arakawa K, Koyano KJJoBS, Engineering. Relationship Between The Load-Displacement Curve And Deformation Distribution In Porcine Mandibular Periodontium. 2009; 4: 336-344.
    51. Ortún‐Terrazas J, Cegoñino J, Santana‐Penín U, Santana‐Mora U, Pérez del Palomar AJIjfnmibe. A porous fibrous hyperelastic damage model for human periodontal ligament: Application of a microcomputerized tomography finite element model. 2019: e3176.
    52. Pini M, Zysset P, Botsis J, Contro RJ. Tensile and compressive behaviour of the bovine periodontal ligament. 2004; 37: 111-119.
    53. Hassan A-R, Biel T, Kim TJ, Engineering. A Mechanical Model for Durotactic Cell Migration. 2019.
    54. M. Gif. Jenna aDB. “An Interface Model for the Periodontal Ligament,”. Journal of Biomechanical Engineering, 2002; vol. 124, pp. 538-546.
    55. Ishak MI, Kadir MA. Biomechanical Considerations In: Proceedings of the Biomechanics in Dentistry: Evaluation of Different Surgical Approaches to Treat Atrophic Maxilla Patients. Springer, 2013: 27-36.
    56. 宮本郷. Biomechanical threedimensional finite-element analysis of maxillary prostheses with implants. Design of number and position of implants for maxillary prostheses after hemimaxillectomy. 2011.
    57. Ochiai KT, Williams BH, Hojo S, Nishimura R, Caputo AA. Photoelastic analysis of the effect of palatal support on various implant-supported overdenture designs. 2004; 91: 421-427.
    58. Mericske-Stern R, Venetz E, Fahrländer F, Bürgin WJTJopd. In vivo force measurements on maxillary implants supporting a fixed prosthesis or an overdenture: a pilot study. 2000; 84: 535-547.
    59. Geng J-P, Tan KB, Liu G-RJ. Application of finite element analysis in implant dentistry: a review of the literature. 2001; 85: 585-598.
    60. Lan TH, Huang HL, Wu JH, Lee HE, Wang CHJTKjoms. Stress analysis of different angulations of implant installation: the finite element method. 2008; 24: 138-143.
    61. Danza M, Zollino I, Paracchini L, Riccardo G, Fanali S, Carinci FJJom, surgery 3D finite element analysis to detect stress distribution: spiral family implants. 2009; 8: 334-339.
    62. Dittmer MP, Kohorst P, Borchers L, Stiesch-Scholz MJAb. Finite element analysis of a four-unit all-ceramic fixed partial denture. 2009; 5: 1349-1355.
    63. Mailath G, Stoiber B, Watzek G, Matejka MJ. Bone resorption at the entry of osseointegrated implants--a biomechanical phenomenon. Finite element study. 1989; 86: 207-216.
    64. Åstrand P, Billström C, Feldmann H, Fischer K, Henricsson V, Johansson B, Nyström E, Sunzel BJCid, research r. Tapered Implants in Jaws with Soft Bone Quality: A Clinical and Radiographie 1‐Year Study of the Brånemark System Mark IV Fixture. 2003; 5: 213-218.
    65. Friberg B, Jisander S, Widmark G, Lundgren A, Ivanoff CJ, Sennerby L, Thorén CJCid, research One‐year prospective three‐center study comparing the outcome of a “soft bone implant”(prototype Mk IV) and the standard Brånemark implant. 2003; 5: 71-77.
    66. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari HJ, Implants M. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. 2003; 18.
    67. Baggi L, Cappelloni I, Di Girolamo M, Maceri F, Vairo GJ. The influence of implant diameter and length on stress distribution of osseointegrated implants related to crestal bone geometry: a three-dimensional finite element analysis. 2008; 100: 422-431.
    68. Kong L, Gu Z, Hu K, Zhou H, Liu Y, Liu BJ. Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis. 2009; 40: 935-940.
    69. Li T, Kong L, Wang Y, Hu K, Song L, Liu B, Li D, Shao J, Ding YJIjoo, surgery m. Selection of optimal dental implant diameter and length in type IV bone: a three-dimensional finite element analysis. 2009; 38: 1077-1083.
    70. Singhal RK, Kamra M. Forces on dental implants: Review of literature. 2009; 2: 193-201.
    71. Desai SR, Karthikeyan I, Gaddale RJ. 3D finite element analysis of immediate loading of single wide versus double implants for replacing mandibular molar. 2013; 17: 777.
    72. Rajendran SV, Shamnadh M, Dileep PJ. Stress analysis of dental implants. 2014; 4: 115.
    73. Cai X, Xu JJAM, Mechanics. Interface models for thin interfacial layers. 2016; 37: 707-724.
    74. Gautam P, Valiathan A, Adhikari RJ, Orthopedics D. Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study. 2007; 132: 5. e1-5. e11.
    75. Ling CX. Influence of Bone Quantity and Quality on Stress Distribution in a Maxillary Implant-supported Overdenture: A 3-Dimensional Finite Element Analysis. Citeseer, 2007.
    76. Bevilacqua M, Tealdo T, Menini M, Pera F, Mossolov A, Drago C, Pera PJ. The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures. 2011; 105: 5-13.
    77. Guan H, Van Staden R, Loo Y-C, Johnson N, Ivanovski S, Meredith NJI. Influence of bone and dental implant parameters on stress distribution in the mandible: a finite element study. 2009; 24: 866-876.
    78. Misch CE. Dental Implant Prosthetics-E-Book. Elsevier Health Sciences
    79. Lan T-H, Du J-K, Pan C-Y, Lee H-E, Chung W-HJ. Biomechanical analysis of alveolar bone stress around implants with different thread designs and pitches in the mandibular molar area. 2012; 16: 363-369.
    80. Misch CE. Contemporary implant dentistry-E-Book. Elsevier Health Sciences
    81. Mosavar A, Ziaei A, Kadkhodaei MJ, Implants M. The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: a finite element analysis. 2015; 30.
    82. Rismanchian M, Birang R, Shahmoradi M, Talebi H, Zare RJ. Developing a new dental implant design and comparing its biomechanical features with four designs. 2010; 7: 70.
    83. Çağlar A, Bal BT, Aydin C, Yilmaz H, Özkan SJ, Implants M. Evaluation of stresses occurring on three different zirconia dental implants: three-dimensional finite element analysis. 2010; 25.
    84. Sevimay M, Turhan F, Kiliçarslan M, Eskitascioglu GJ. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. 2005; 93: 227-234.
    85. St-Pierre J-P, Gauthier M, Lefebvre L-P, Tabrizian MJB. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds. 2005; 26: 7319-7328.
    86. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura TJB. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. 2006; 27: 5892-5900.

    無法下載圖示 全文公開日期 2021/08/01 (校內網路)
    全文公開日期 2024/08/01 (校外網路)
    全文公開日期 2022/08/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE