簡易檢索 / 詳目顯示

研究生: 周煌傑
Huang-Chieh Chou
論文名稱: 利用疏水表面改質提升快速晶片結合技術
Applying hydrophobic surface treatment to improve the rapid bonding method of thermoplastic microfluidic chips
指導教授: 陳品銓
Pin-chuan Chen
口試委員: 鄧昭瑞
Geo-ry Tang
張復瑜
Fuh-yu Chang
郭俊良
Chun-liang Kuo
田維欣
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 100
中文關鍵詞: UV膠晶片黏接微流體晶片表面改質
外文關鍵詞: UV bonding, UV glue, microfluidic chip, microchannel
相關次數: 點閱:375下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是針對先前研究的拋棄式體外檢測晶片(In-Vitro Diagnosis Chip)之結合製程所提出的改良型UV膠黏接製程,將其應用於實際的微流體晶片黏接。實驗用之微流體晶片由微銑削機來製作,並將此微流體晶片以改良型UV膠黏接製程達到快速貼合的目標。本研究所開發之改良型UV膠黏接製程有兩個主要的設計,首先我們使用旋轉塗佈的方式將UV膠塗佈在壓克力披覆基材之上,旋轉塗佈時會採用兩段不同的轉速來進行,第一段轉速為較低轉速,其目的是為了將UV膠均勻地散佈在披覆基材之上。而第二段轉速為較高轉速,來將均勻散佈的UV膠旋塗至黏接所需要的UV膠厚度。另外我們於流道晶片上設計許多微小突起的結構,其目的是控制晶片貼合時的間距,來防止固化前液體狀UV膠流入微流道造成堵塞的情形。黏接過程中也發現當微流道越小時,流道堵塞的情形將會因為毛細力以及UV膠黏度的關係而越加嚴重。因此透過表面疏水改質的方式提升晶片壁面的接觸角,增加壁面阻力來防止膠體流入流道之中,而從流道斷面的檢測也可以發現UV膠體流入比率和流道品質確實有所改善。


The major goal of this research is to develop a rapid and reliable bonding technique of disposable microfluidic devices for a mass production line. The original idea of this method was from the regular UV glue bonding, and what we focused herein was to prevent the UV glue flow into the microchannel during the bonding process. Two approaches were used to achieve excellent bonding of microfluidic chips without any glue clogging, including (1) using spin coating of UV glue to achieve uniform and thin glue layer, and (2) carefully designing the standing structures on the chips to maintain a tiny gap between the two substrates. In the experiments, multiple PMMA microfluidic chips with a cross-sectional area of 200μm × 200μm were fabricated with a micromilling machine. On the other hand, we also use some process improvement and design to assist our two approach when the microchannel is getting tiny, the capillary force will lead the glue flow into the microchnnel. And the experiment results showed that averagely only 2-3% of the cross-sectional areas were occupied by the glue after investigating the cross-sectional areas of multiple bonded chips. To fully understand this method’s limitation, multiple experiments were planned to study the impact of various factors to the bonding performance.

摘要.......................................I Abstract.................................III 致謝.......................................V 目錄.....................................VII 圖目錄.....................................X 表目錄....................................XV 符號表...................................XVI 第一章 導論................................1 1.1研究背景................................1 1.1.1微流體晶片黏接方式.....................6 1.2研究動機...............................13 1.2.1膠著劑黏接文獻回顧....................16 1.3研究方法...............................22 1.4論文架構...............................24 第二章 晶片製程介紹與設計..................26 2.1微流體晶片的製程介紹....................26 2.1.1前言................................26 2.2流道晶片的製程.........................28 2.3本研究所用之UV膠黏接方法................31 2.3.1UV膠黏接晶片製程.....................32 2.4改善黏接相關設計.......................41 2.4.1移除晶片下片之毛邊...................41 2.4.2Z軸再校正改善微小突起結構.............43 2.4.3疏水塗料進行流道改質.................46 2.4.4疏水塗料局部改質.....................49 2.5UV膠黏接技術泛用性之晶片設計............52 2.5.1多層結構之微流體晶片設計..............52 2.5.2改變外型與黏接接觸面積之晶片設計.......58 第三章 實驗設備與方法......................61 3.1實驗設備..............................61 3.1.1製程設備............................61 3.1.2量測設備............................70 3.2實驗方法..............................74 3.2.1流道斷面量測 ........................74 3.2.2晶片黏接強度測試.....................76 第四章 實驗結果與討論.....................79 4.1晶片截面情形觀測.......................79 4.2晶片黏接強度測試.......................88 第五章 結論與未來展望.....................91 5.1結論.................................91 5.2未來展望..............................93 參考文獻.................................95

[1] S. Spisak, Z. Tulassay, B. Molnar, and A. Guttman, "Protein microchips in biomedicine and biomarker discovery," Electrophoresis, vol. 28, pp. 4261-4273, 2007.
[2] S. Carroll, M. M. Crain, J. F. Naber, R. S. Keynton, K. M. Walsh, and R. P. Baldwin, "Room temperature UV adhesive bonding of CE devices," Lab on a Chip, vol. 8, pp. 1564-1569, 2008.
[3] F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, M. Ishikawa, and Y. Baba, "Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method," Lab on a Chip, vol. 5, pp. 472-478, 2005.
[4] Y. Li, J. S. Buch, F. Rosenberger, D. L. DeVoe, and C. S. Lee, "Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network," Analytical chemistry, vol. 76, pp. 742-748, 2004.
[5] D. S. W. Park, M. L. Hupert, M. A. Witek, B. H. You, P. Datta, J. Guy, J. B. Lee, S. A. Soper, D. E. Nikitopoulos, and M. C. Murphy, "A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification," Biomed Microdevices, vol. 10, pp. 21-33, 2008.
[6] P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, "Cyclic olefin polymers: emerging materials for lab-on-a-chip applications," Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010.
[7] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab Chip, vol. 7, pp. 499-505, 2007.
[8] http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html#c1.Cited
28 December 2013.
[9] http://blogs.rsc.org/chipsandtips/2010/05/17/fast-iteration-prototyping -and-bonding-od-complex-plastic-microfluidic-devices/.Cited 28 December 2013.
[10] C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009.
[11] J. Kim, R. Surapaneni, and B. K. Gale, "Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite," Lab Chip, vol. 9, pp. 1290-1293, 2009.
[12] Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, and P. Grodzinski, "DNA amplification and hybridization assays in integrated plastic monolithic devices," Analytical Chemistry, vol. 74, pp. 3063-3070, 2002.
[13] R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, "Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection," Analytical chemistry, vol. 76, pp. 1824-1831, 2004.
[14] R. Arayanarakool, S. Le Gac, and A. van den Berg, "Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive," Lab Chip, vol. 10, pp. 2115-2121, 2010.
[15] S. M. Langelier, L. Y. Yeo, and J. Friend, "UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration," Lab Chip, vol. 12, pp. 2970-2976, 2012.
[16] J. Han, S. Lee, A. Puntambekar, S. Murugesan, J. W. Choi, G. Beaucage, and C. H. Ahn, "UV adhesive bonding techniques at room temperature for plastic lab-on-a-chip," in 7th International Conference of Miniaturized Chemical and Biochemical Analysis Systems, October 5-9, 2003, Squaw Valley, California, USA, 2003.
[17] C. Lu, L. J. Lee, and Y. J. Juang, "Packaging of microfluidic chips via interstitial bonding technique," Electrophoresis, vol. 29, pp. 1407-1414, 2008.
[18] Yu-Jen Pan, Ruey-Jen Yang, "A glass microfluidic chip adhesive bonding method at room temperature, " Journal of Micromechanics and Microengineering , vol. 16, pp. 2666-2672, 2006.
[19] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979.
[20] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
[21] P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices," Electrophoresis, vol. 26, pp. 1792-1799, 2005.
[22] Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab Chip, vol. 5, pp. 869-876, 2005.
[23] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Jee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE, vol. 92, pp. 154-173, 2004.
[24] E. Vázquez, C. A. Rodríguez, A. Elías-Zúñiga, and J. Ciurana, "An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 945-955, 2010.
[25] J. S. Mecomber, D. Hurd, and P. A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1542-1550, 2005.
[26] M. Y. Ali, "Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling," International Journal of Mechanical and Materials Engineering (IJMME), vol. 4, pp. 93-97, 2009.
[27] M. L. Hupert, W. J. Guy, S. D. Llopis, H. Shadpour, S. Rani, D. E. Nikitopoulos, and S. A. Soper, "Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices," Microfluidics and Nanofluidics, vol. 3, pp. 1-11, 2006.
[28] E. S. Topal, "The role of stepover ratio in prediction of surface roughness in flat end milling," International Journal of Mechanical Sciences, vol. 51, pp. 782-789, 2009.
[29] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
[30] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
[31] M. Heckele, W. Bacher, and K. Müller, "Hot embossing-the molding technique for plastic microstructures," Microsystem technologies, vol. 4, pp. 122-124, 1998.
[32] Y.-C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding," Journal of Micromechanics and Microengineering, vol. 14, pp. 415-422, 2004.
[33] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1623-1630, 2014.
[34]劉育旻, "拋棄式流道晶片之結合技術," 碩士, 機械工程研究所, 國立臺灣科技大學, 臺北市, 2014.
[35] http://www.kayakumicrochem.jp/.Cited 28 December 2013
[36]黃立政, 流體力學原理與應用. 台北市: 全華科技圖書股份有限公司, 2001.
[37] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic
Pattern Formation in a Vesicle-Generating Microfluidic Device,"
Physical Review Letters, vol. 86, pp. 4163-4166, 2001.
[38]T. Tsukahara, K. Mawatari, A. Hibara, and T. Kitamori, "Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction," Anal Bioanal Chem, vol. 391, pp. 2745-2752, 2008.
[39] C. Zhang, D. Xing, and Y. Li, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends," Biotechnol Adv, vol. 25, pp. 483-514, Sep-Oct 2007.
[40] R. Pal, M. Yang, B. N. Johnson, D. T. Burke, and M. A. Burns, "Phase change microvalve for integrated devices," Analytical chemistry, vol. 76, pp. 3740-3748, 2004.
[41] S. Satyanarayana, R. N. Karnik, and A. Majumdar, "Stamp-and-stick room-temperature bonding technique for microdevices," Microelectromechanical Systems, Journal of, vol. 14, pp. 392-399, 2005.

QR CODE