簡易檢索 / 詳目顯示

研究生: 劉育旻
Yu-min Liu
論文名稱: 拋棄式流道晶片之結合技術
A reliable and rapid method for bonding disposable microfluidic chips
指導教授: 陳品銓
Pin-chuan Chen
口試委員: 陳炤彰
Chao-chang A. Chen
鐘俊輝
Chun-hui Chung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 103
中文關鍵詞: UV膠晶片黏接微流體晶片晶片封裝
外文關鍵詞: microfluidic chip, UV bonding, chip package, UV glue
相關次數: 點閱:361下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究重點是改良既有的拋棄式體外檢測晶片(In-Vitro Diagnosis Chip)之結合製程,並希望將此製程延伸至量產製程上,用於生醫產業之檢測晶片發展。研究初期的製程先利用微铣削機器對PMMA(聚甲基丙烯酸甲酯)基板進行微流道及微結構的製作,由切削的方式快速取得本研究製程測試的晶片。未來晶片的製作步驟可利用射出成形製程替代,增加晶片的製作效率來達到量產的最終目的。晶片的製作完成後,晶片黏接的部分是利用旋轉塗佈的方式,塗佈出均勻的UV膠(紫外光固化膠)薄膜層於另一塊PMMA基板上,再將兩塊基板對齊貼合後,施予一均勻的壓力,確保兩塊晶片間的貼合,最後再利用紫外光曝光機對UV膠照射定量之UV光後,使UV膠層快速固化,即完成拋棄式體外檢測晶片之製造。製程中利用多段旋轉塗佈參數的調整與間隙微小凸起結構的設計,來改善現有文獻中紫外光固化膠流入微流道的狀況,達到量產拋棄式體外檢測晶片的結合技術。


    The major focus of this research is to improve the current bonding technique of disposable in-vitro diagnosis (IVD) biochips and to extend this technique into a mass production manufacturing process. A micromilling machine was used to fabricate microchannels and designed microstructures on the PMMA substrate, and a second piece of PMMA substrate was bonded to the first piece by applying UV glue bonding. To prevent the glue flowing into the microchannel during the process, two approaches were used, including designing microstructures to maintain a gap between the two pieces of PMMA substrates and spin-coating the UV glue as flat as possible. To understand the bonding strength, multiple experiments were carried out, and the results showed that those microfluidic chips could survive under the pressure of 10 bar.

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 X 表目錄 XIV 符號表 XV 第一章導論 1 1.1研究背景 1 1.2研究動機 5 1.3研究方法 7 第二章晶片黏接方法 9 2.1晶片黏接方法文獻回顧 10 2.1.1熱黏接 10 2.1.2化學溶劑溶解黏接 14 2.1.3膠著劑黏接 18 2.2晶片黏接方式比較 23 2.3新UV膠黏接方式 27 第三章晶片製程介紹與設計 29 3.1微流體晶片的製程介紹 29 3.1.1前言 29 3.2晶片的製程 32 3.3防止UV膠流入流道相關設計 46 第四章實驗設備與方法 63 4.1實驗設備. 63 4.1.1製程設備 63 4.1.2量測儀器 72 4.2實驗方法 78 4.2.1流道斷面之量測 78 4.2.2黏接強度之測試 80 第五章實驗結果與討論 85 5.1晶片黏接壓力量測 85 5.2晶片斷面情形 89 第六章結論與未來展望 95 6.1結論 97 6.2未來展望 98 參考文獻 99

    [1] S. Spisak, Z. Tulassay, B. Molnar, and A. Guttman, "Protein microchips in biomedicine and biomarker discovery," Electrophoresis, vol. 28, pp. 4261-4273, 2007.
    [2] S. Carroll, M. M. Crain, J. F. Naber, R. S. Keynton, K. M. Walsh, and R. P. Baldwin, "Room temperature UV adhesive bonding of CE devices," Lab on a Chip, vol. 8, pp. 1564-1569, 2008.
    [3] F. Dang, S. Shinohara, O. Tabata, Y. Yamaoka, M. Kurokawa, Y. Shinohara, M. Ishikawa, and Y. Baba, "Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method," Lab on a Chip, vol. 5, pp. 472-478, 2005.
    [4] H. Becker and U. Heim, "Hot embossing as a method for the fabrication of polymer high aspect ratio structures," Sensors and Actuators A: Physical, vol. 83, pp. 130-135, 2000.
    [5] L. Tang and N. Y. Lee, "A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature," Lab on a Chip, vol. 10, pp. 1274-1280, 2010.
    [6] F. Dang, O. Tabata, M. Kurokawa, A. A. Ewis, L. Zhang, Y. Yamaoka, S. Shinohara, Y. Shinohara, M. Ishikawa, and Y. Baba, "High-performance genetic analysis on microfabricated capillary array electrophoresis plastic chips fabricated by injection molding," Analytical chemistry, vol. 77, pp. 2140-2146, 2005.
    [7] M. Heckele and W. Schomburg, "Review on micro molding of thermoplastic polymers," Journal of Micromechanics and Microengineering, vol. 14, p. R1, 2004.
    [8] X. Zhu, G. Liu, Y. Guo, and Y. Tian, "Study of PMMA thermal bonding," Microsystem technologies, vol. 13, pp. 403-407, 2007.
    [9] Y. Li, J. S. Buch, F. Rosenberger, D. L. DeVoe, and C. S. Lee, "Integration of isoelectric focusing with parallel sodium dodecyl sulfate gel electrophoresis for multidimensional protein separations in a plastic microfludic network," Analytical chemistry, vol. 76, pp. 742-748, 2004.
    [10] D. S. W. Park, M. L. Hupert, M. A. Witek, B. H. You, P. Datta, J. Guy, J. B. Lee, S. A. Soper, D. E. Nikitopoulos, and M. C. Murphy, "A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification," Biomed Microdevices, vol. 10, pp. 21-33, 2008.
    [11] P. S. Nunes, P. D. Ohlsson, O. Ordeig, and J. P. Kutter, "Cyclic olefin polymers: emerging materials for lab-on-a-chip applications," Microfluidics and Nanofluidics, vol. 9, pp. 145-161, 2010.
    [12] C. W. Tsao, L. Hromada, J. Liu, P. Kumar, and D. L. DeVoe, "Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment," Lab Chip, vol. 7, pp. 499-505, 2007.
    [13] S. R. Nugen, P. J. Asiello, J. T. Connelly, and A. J. Baeumner, "PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection," Biosensors and Bioelectronics, vol. 24, pp. 2428-2433, 2009.
    [14] P. Abgrall, L.-N. Low, and N.-T. Nguyen, "Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding," Lab Chip, vol. 7, pp. 520-522, 2007.
    [15]http://blogs.rsc.org/chipsandtips/2010/05/17/fast-iteration-prototyping-and-bonding-of-complex-plastic-microfluidic-devices/.Cited 28 December 2013
    [16] C.-W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics," Microfluidics and Nanofluidics, vol. 6, pp. 1-16, 2009.
    [17] J. H. H. a. R. L. Scott., Chemistry and biochemistry, 1951.
    [18] H. Klank, J. P. Kutter, and O. Geschke, "CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems," Lab Chip, vol. 2, pp. 242-246, 2002.
    [19] J. J. Shah, J. Geist, L. E. Locascio, M. Gaitan, M. V. Rao, and W. N. Vreeland, "Capillarity induced solvent-actuated bonding of polymeric microfluidic devices," Analytical chemistry, vol. 78, pp. 3348-3353, 2006.
    [20] J. Kim, R. Surapaneni, and B. K. Gale, "Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite," Lab Chip, vol. 9, pp. 1290-1293, 2009.
    [21] Y. Liu, C. B. Rauch, R. L. Stevens, R. Lenigk, J. Yang, D. B. Rhine, and P. Grodzinski, "DNA amplification and hybridization assays in integrated plastic monolithic devices," Analytical Chemistry, vol. 74, pp. 3063-3070, 2002.
    [22] R. H. Liu, J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski, "Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection," Analytical chemistry, vol. 76, pp. 1824-1831, 2004.
    [23] R. Arayanarakool, S. Le Gac, and A. van den Berg, "Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive," Lab Chip, vol. 10, pp. 2115-2121, 2010.
    [24] S. M. Langelier, L. Y. Yeo, and J. Friend, "UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration," Lab Chip, vol. 12, pp. 2970-2976, 2012.
    [25] J. Han, S. Lee, A. Puntambekar, S. Murugesan, J. W. Choi, G. Beaucage, and C. H. Ahn, "UV adhesive bonding techniques at room temperature for plastic lab-on-a-chip," in 7th International Conference of Miniaturized Chemical and Biochemical Analysis Systems, October 5-9, 2003, Squaw Valley, California, USA, 2003.
    [26] C. Lu, L. J. Lee, and Y. J. Juang, "Packaging of microfluidic chips via interstitial bonding technique," Electrophoresis, vol. 29, pp. 1407-1414, 2008.
    [27] http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html#c1.Cited 28 December 2013
    [28] S. C. Terry, J. H. Jerman, and J. B. Angell, "A gas chromatographic air analyzer fabricated on a silicon wafer," Electron Devices, IEEE Transactions on, vol. 26, pp. 1880-1886, 1979.
    [29] D. J. Harrison, A. Manz, Z. Fan, H. Luedi, and H. M. Widmer, "Capillary electrophoresis and sample injection systems integrated on a planar glass chip," Analytical Chemistry, vol. 64, pp. 1926-1932, 1992.
    [30] P. Mela, A. van den Berg, Y. Fintschenko, E. B. Cummings, B. A. Simmons, and B. J. Kirby, "The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices," Electrophoresis, vol. 26, pp. 1792-1799, 2005.
    [31] Y. Yang, C. Li, J. Kameoka, K. H. Lee, and H. G. Craighead, "A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry," Lab Chip, vol. 5, pp. 869-876, 2005.
    [32] C. H. Ahn, J. W. Choi, G. Beaucage, J. H. Nevin, J. B. Jee, A. Puntambekar, and J. Y. Lee, "Disposable smart lab on a chip for point-of-care clinical diagnostics," Proceedings of the IEEE, vol. 92, pp. 154-173, 2004.
    [33] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
    [34] E. Vazquez, C. A. Rodriguez, A. Elias-Zuniga, and J. Ciurana, "An experimental analysis of process parameters to manufacture metallic micro-channels by micro-milling," The International Journal of Advanced Manufacturing Technology, vol. 51, pp. 945-955, 2010.
    [35] J. S. Mecomber, D. Hurd, and P. A. Limbach, "Enhanced machining of micron-scale features in microchip molding masters by CNC milling," International Journal of Machine Tools and Manufacture, vol. 45, pp. 1542-1550, 2005.
    [36] M. Y. Ali, "Fabrication of microfluidic channel using micro end milling and micro electrical discharge milling," International Journal of Mechanical and Materials Engineering (IJMME), vol. 4, pp. 93-97, 2009.
    [37] M. L. Hupert, W. J. Guy, S. D. Llopis, H. Shadpour, S. Rani, D. E. Nikitopoulos, and S. A. Soper, "Evaluation of micromilled metal mold masters for the replication of microchip electrophoresis devices," Microfluidics and Nanofluidics, vol. 3, pp. 1-11, 2006.
    [38] E. S. Topal, "The role of stepover ratio in prediction of surface roughness in flat end milling," International Journal of Mechanical Sciences, vol. 51, pp. 782-789, 2009.
    [39] B. J. Polk, A. Stelzenmuller, G. Mijares, W. MacCrehan, and M. Gaitan, "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B: Chemical, vol. 114, pp. 239-247, 2006.
    [40] Y.-C. Su, J. Shah, and L. Lin, "Implementation and analysis of polymeric microstructure replication by micro injection molding," Journal of Micromechanics and Microengineering, vol. 14, pp. 415-422, 2004.
    [41] M. Heckele, W. Bacher, and K. Muller, "Hot embossing-the molding technique for plastic microstructures," Microsystem technologies, vol. 4, pp. 122-124, 1998.
    [42] S. K. Sia and G. M. Whitesides, "Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies," Electrophoresis, vol. 24, pp. 3563-3576, 2003.
    [43] H. Becker and C. Gartner, "Polymer microfabrication technologies for microfluidic systems," Anal Bioanal Chem, vol. 390, pp. 89-111, 2008.
    [44] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application," BioTechniques, vol. 38, pp. 429-446, 2005.
    [45] P.-C. Chen, C.-W. Pan, W.-C. Lee, and K.-M. Li, "An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate," The International Journal of Advanced Manufacturing Technology, vol. 71, pp. 1623-1630, 2014.
    [46] 余宣魁, "預塗表面對旋轉塗佈的影響," 碩士, 機械工程研究所, 國立中央大學, 桃園縣, 2000.
    [47]http://www.kayakumicrochem.jp/.Cited 28 December 2013
    [48] 黃立政, 流體力學原理與應用. 台北市: 全華科技圖書股份有限公司, 2001.
    [49] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device," Physical Review Letters, vol. 86, pp. 4163-4166, 2001.
    [50] T. Tsukahara, K. Mawatari, A. Hibara, and T. Kitamori, "Development of a pressure-driven nanofluidic control system and its application to an enzymatic reaction," Anal Bioanal Chem, vol. 391, pp. 2745-2752, 2008.
    [51] C. Zhang, D. Xing, and Y. Li, "Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends," Biotechnol Adv, vol. 25, pp. 483-514, Sep-Oct 2007.
    [52] R. Pal, M. Yang, B. N. Johnson, D. T. Burke, and M. A. Burns, "Phase change microvalve for integrated devices," Analytical chemistry, vol. 76, pp. 3740-3748, 2004.
    [53] S. Satyanarayana, R. N. Karnik, and A. Majumdar, "Stamp-and-stick room-temperature bonding technique for microdevices," Microelectromechanical Systems, Journal of, vol. 14, pp. 392-399, 2005.

    QR CODE