簡易檢索 / 詳目顯示

研究生: 馬嘉琳
Chia-lin Ma
論文名稱: 轉印氧化鋅薄膜於有機半導體表面之研究
Study the Behavior of Transferable ZnO Layer on Organic Semiconductor Thin Film Surface
指導教授: 戴 龑
Yian Tai
口試委員: 王澤元
Olivier Wang
王承浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 126
中文關鍵詞: 反置型太陽能電池氧化鋅親疏水化學鍵結
外文關鍵詞: Inverted solar cell, ZnO, hydrophilicity, chemical bonding
相關次數: 點閱:267下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討以兩種不同的犧牲層溶液-Poly(acrylic acid)與Polystyrene sulfonates,利用轉印技術轉印具親水性的氧化鋅薄膜於P3HT:PCBM目標基板上。其中氧化鋅薄膜以合成之奈米粒子之氧化鋅溶液利用旋轉塗佈法,和以噴霧裂解法製備成薄膜。
不論以Poly(acrylic acid)或 Polystyrene sulfonates當犧牲層,轉印之氧化鋅奈米粒子薄膜,均需混摻具疏水性的有機小分子,才能轉印成功,發現轉印技術成功要件為薄膜間的親疏水性。而轉印以噴霧裂解法製備之氧化鋅薄膜,與其犧牲層間的鍵結元素型態與強度甚為重要,由SEM與XPS得知,Polystyrene sulfonates之SO3-與Zn2+ 間靜電作用力很弱,而Poly(acrylic acid)之COO-與Zn2+以共價鍵鍵結,無法轉印,使得PSS可以成功轉印氧化鋅薄膜於主動層上。
最後以PSS為犧牲層轉印以噴霧裂解法製備之氧化鋅薄膜於具疏水層之ITO基板上,製備反置型有機太陽能電池,而在溫度300℃、流速320sccm-10mins之氧化鋅薄膜,可得其光電轉換效率為3.17。


In this thesis, we focuses on a facile method of transferring hydrophilic Zinc oxide film to P3HT: PCBM substrate using water soluble materials like Poly(acrylic acid) and Poly(styrene sulfonate) as sacrificial layer. The Zinc oxide thin-films were coated on the sacrificial layer by spin-coating method from solution-based Zinc oxide nanoparticles and spray pyrolysis. When Poly (acrylic acid) or Poly(styrene sulfonate) used as sacrificial layer, Zinc oxide thin-film which prepared by solution-based Zinc oxide nanoparticles, were blended with hydrophobic organic small-molecules in order to transfer the film successfully onto P3HT:PCBM substrate. We have found that the key of transfer requirement is the hydrophilicity relationship between two thin-film layers. On the other hand, to transfer Zinc oxide thin films prepared by spray pyrolysis, we found that the element of bond energy between the sacrificial layer and Zinc oxide is important. From XPS and SEM results, Poly(acrylic acid) of carboxyl (COO-) functional group formed strong covalent bonds with Zn2+ ions compared to Poly(styrene sulfonate) of SO3-, which severely limits the transfer of the film.
Finally, Poly(styrene sulfonate) was used as sacrificial layer to transfer Zinc oxide thin film, which was prepared by spray pyrolysis on the ITO substrate with a hydrophobic layer, and fabricated the inverted organic solar cell devices. A power conversion efficiency of 3.17% was achieved. The result suggests that using a water soluble sacrificial layer is promising method to transfer thin film.

中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xvi 名詞縮寫表 xvii 第一章 緒論 1 1-1 前言 1 1-2 有機太陽能電池 3 1-2-1 有機太陽能電池簡介 3 (1)傳統型有機單層太陽能電池 3 (2) 反置型有機單層太陽能電池 4 (3) 層疊式有機太陽能電池 5 1-3 層疊式太陽能電池之中間層 6 1-4 轉印薄膜研究 9 1-5 氧化鋅於太陽能電池的應用 12 第二章 相關理論 14 2-1 自組裝單分子薄膜(Self-assembled monolayer, SAM) 14 2-1-1 自組裝單分子薄膜簡介 14 2-1-2 自組裝單分子薄膜製作方式 16 2-1-3 自組裝單分子薄膜應用 16 2-2 太陽能電池工作原理與轉換效率 19 2-2-1 太陽光的光譜分析 19 2-2-2 太陽能電池工作原理 20 2-2-3 太陽能電池之參數 24 2-3 氧化鋅 (Zinc Oxide, ZnO) 29 2-3-1 氧化鋅-晶體結構 30 2-3-2 氧化鋅-機械性質 32 2-3-3 氧化鋅-光學性質 33 2-3-4 氧化鋅薄膜-成長方式 34 第三章 實驗方法 37 3-1 實驗藥品 37 3-2 實驗儀器 38 3-3 氧化鋅奈米粒子之合成 39 3-4 自組裝單分子層薄膜的製備 40 3-4 氧化鋅種晶層置備方法 41 3-5 氧化鋅薄膜之轉移方法 42 3-6 反置型高分子太陽能電池製備 45 3-6-1 基板之圖樣化與清洗程序 45 3-6-2 元件製備流程 46 3-7 實驗量測儀器 48 3-8 實驗流程 50 第四章 結果與討論 51 4-1 氧化鋅奈米粒子之分析 51 4-2 以Poly (acrylic acid) 為犧牲層,轉印氧化鋅薄膜之分析 53 4-2-1 Poly (acrylic acid)之性質研究 53 4-2-2 氧化鋅奈米粒子之薄膜轉印過程 54 4-2-3 轉印混摻有機小分子之氧化鋅奈米粒子薄膜分析 65 4-2-4 以噴霧裂解法製備之氧化鋅薄膜轉印過程與研究 72 4-3 以 Polystyrene sulfonate 為犧牲層,轉印氧化鋅薄膜之分析 75 4-3-1 Polystyrene sulfonate之性質研究 75 4-3-2 轉印混摻有機小分子之氧化鋅奈米粒子薄膜之分析 76 4-3-3 以噴霧裂解法製備氧化鋅薄膜轉印過程 82 4-3-4 轉印氧化鋅薄膜之分析 88 4-3-5 轉印氧化鋅薄膜製作反置型太陽能電池 102 第五章 結論與未來展望 105 第六章 參考文獻 107

[1] Y. Lare, et al., Journal of Materials Science:Mateials in Electronics 2011, 22, 365
[2] Jiun-Haw Lee, et al., Elsevier, Solar Energy Materials & Solar Cells 2012, 103, 69
[3] M. Reyes-Reyes, K. Kim, D. L. Carroll, Applied Physics Letters 2005, 87, 083506
[4] K. W. Wong, H. L. Yip, Y. Luo et al, Applied Physics Letters 2002, 80, 2788
[5] M. S. W. Sean E. Shaheen, Dana C. Olson et al, Solar &Alternative Energy 2007
[6] K. N. a. Y. T. Shizuo Tokito, Journal of Applied Physics 1996, 29, 2750
[7] Y. D. Han You, Zhiqiang Zhang, and Dongge Ma, Journal of Applied Physics 2007, 101(2), 026105
[8] D. C. O. M. S. White, S. E. Shaneen et al, Applied Physics Letters 2006, 89(14), 143517
[9] D. P. N. Y.W. Heo, L.C. Tiena, Y. Kwona et al, Materials Science and Engineering: R: Reports 2004, 47 (1-2), 1-47
[10] Tayebeh Ameri, Gilles Dennler, Christoph Lungenschmied and Christoph J. Brabec, Energy Environmental Science 2009, 2, 347
[11] Yakimov, S. R. Forrest, Applied Physics Letters 2002, 80, 1667
[12] J. Drechsel, B. Maennig, K. Kozlowski, M. Pfeiffer and K. Leo, Applied Physics Letters 2005, 86, 244102
[13] K. Kawano, N. Ito, T. Nishimori and J. Sakai, Applied Physics Letters 2006, 88, 73514
[14] A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Advanced Functional Materials 2006, 16, 1897
[15] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nature Communications 2013, 4, 1446
[16] J. You, C. C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, Y. Yang, Advanced Materials 2013, 25, 1521
[17] N. Li, T. Stubhan, D. Baran, J. Min, H. Wang, T. Ameri, C. J. Brabec, Advanced Energy Materials 2012, 3, 301.
[18] N. Li, D. Baran, K. Forberich, M. Turbiez, T. Ameri, F. C. Krebs, C. J. Brabec, Advanced Energy Materials 2013, 25, 1614.
[19] Q. Wei, S. Miyanishi, K. Tajima, K. Hashimoto, Appied Materials & Interfaces 2009, 1, 2660.
[20] A. Tada, Y. Geng, Q. Wei, K. Hashimoto, K. Tajima, Nature Materials 2011, 10, 450
[21] S. H. Kim, J. Yoon, S. O. Yun, Y. Hwang, H. S. Jang, H. C. Ko, Advanced Functional Materials 2012, 23, 1375.
[22] W. J. E. Beek, M. M. Wienk, R. A. J. Janssen, Advanced Functional Materials 2006, 16, 1112
[23] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, C. J. Brabec, Applied Physics Letters 2006, 89, 23352
[24] A. Ulman, Academic Press, San Diego 1991.
[25] S. Khodabakhsh, B. M. Sanderson, J. Nelson, T. S. Jones, Advanced Functional Materials 2006, 16, 95.
[26] J. S. Kim, J. H. Park, J. H. Lee, Applied Physics Letters 2007, 91, 112111.
[27] A. Ulman, Chemical Reviews 1996, 96, 1553.
[28] I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Physicals Review Letters 1996, 76, 1900.
[29] I. D. Parker, Journal of Applied Physics 1994, 75, 1656.
[30] R. A. Hatton, S. R. Day, M. A. Chesters, M. R. Wills, Thin Solid Films 2001, 394, 292
[31] S. F. J. Appleyard, M. R. Willis, Optical Materials 1999, 9, 120.
[32] B. d. Boer, A. Hadipour, M. Magdalena, T. V. Woudenbergh, P. W. M. Blom, Advanced Materials 2005, 17, 621.
[33] H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, Physical Review 1996, 54, 14321.
[34] R. W. Zehner, B. F. Parsons, R. P. Hsung, L. R. Sita, Langmui 1999, 15, 1121.
[35] 林明獻,太陽電池技術入門(修訂版),全華圖書股份有限公司(2008)
[36] 許嘉文,高效率有機-無機一直結構太陽能電池之探索,國立海洋大學(2006)
[37] Jens Cremer, Novel head-to-tail coupled oligo(3-hexylthiophene)derivatives for photovoltaic applications, PhD Thesis(2005)
[38] Dipl.Ing. Klaus Petritsch, Oraganc Solar Cell Architectures, PhD Thesis(2002)
[39] 葉楚平,張正華,楊平華,李陵嵐,有機與塑膠太陽能電池,五南圖書出版股份有限公司(2007)
[40] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, R. D. McCullough, Macromolecules 2001, 34, 4324.
[41] R. D. McCullough, United States Patent 6 2000, 166, 172.
[42] C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures 2006
[43] H. Zhang, D. Yang, S. Li, X. Ma, Y. Ji, J. Xu, D. Que, Materials Letters 2005, 59, 1696
[44] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue, M. Yano, Applied Physics Letters 2005, 86, 203105.
[45] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 2005, 178, 1864.
[46] H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, E. A. Fitzgerald, Applied Physics Letters 2005, 87, 101908.
[47] Y. Sun, N. G. Ndifor-Angwafor, D. J. Riley, M. N. R. Arshfold, Chemical Physics Letters 2006, 431, 352.
[48] A. Umar, B. Karunagaran, E. K. Suh, Y. B. Hahn, Nanotechnology 2006, 17, 4072.
[49] X. Liu, X. Hu, H. Cao, R. P. H. Chang, Journal of Applied Physics 2004, 95, 3141.
[50] D. Perednis, J. Gauckler, Journal of electroceramics 2005, 14, 103.
[51] H. Womelsdorf, W. Hoheisel, G. Passing, DE-A 199 077 04 A 1, 2000
[52] Z. L. S. Seow, A. S. W. Wong, V. Thavasi et al., Nanotechnology 2009, 2
[53] W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Materials Science in Semiconductor Processing 2006, 9, 156
[54] Cory Hanley, Aaron Thurber, Charles Hanna, Alex Punnoose, Jianhui Zhang, Denise G. Wingett, Nanoscale Research Letters 2009, 4, 1409
[55] Vincent Linder, Byron D. Gates, Declan Ryan, Babak A. Parviz, and George M. Whitesides, small 2005, 1(7), 730
[56]黃柏泓, Study the Fabrication of Solution Processable, Transferable ZnO Thin Film for Organic solar Cell Device Applications,2013
[57] Hamdy H. Hassan, Mohammed A. Amin, S. Gubbala, M.K. Sunkara, Electrochimica Acta 2007, 52, 6929
[58] A. Sharma, B.P. Singh, S. Dhar, A. Gondorf, M. Spasova, Surface Science 2012, 606, L13
[59] Pierre Louette, Frederic Bodino, and Jean-Jacques Pireaux, Surface Science Spectra 2005, 12
[60] Andrea Adamcakova-Dodd, Larissa V Stebounova, Jong Sung Kim, Sabine U Vorrink, Andrew P Ault, Patrick T O’Shaughnessy, Vicki H Grassian and Peter S Thorne, Particle and Fibre Toxicology 2014, 11
[61] Gerard Blandenet et al., Thin Solid Films 1981,77 ,81
[62] Mahmoud Nasef, Hamdani Saidi, Hussin Mohd Nor, Mohd Ambar Yarmo, Journal of Applied Polymer Science 2000, 76, 336
[63] A. Peled, B. Dragnea, Rodica Alexandrescu, A. Andrei, Applied Surface Science 1995, 86, 538
[64] Wanger J.,Gruber M., Hinderhofer A. et al., Advanced Functional Materials 2010, 20, 4295
[65] Brabec C J., Solar Energy Materials & Solar Cells 2004, 83, 273
[66] Fan Hai-Bo, Yang Shao-Yan, Zhang Pan-Feng et al., Chinese Physics Letters 2007, 24, 2108

QR CODE